

Learning By Doing 2021 Aquatic Resource Monitoring Plan

Contents

Aquatic Resource Monitoring Plan Overview	1
Summary of Existing Monitoring Efforts	3
2021 Stream Temperature Monitoring Plan	7
2021 Sediment Monitoring Plan	13
2021 Macroinvertebrate Monitoring Plan	21
2021 303(d) Evaluation List and Monitoring Plan	30
2021 CPW Fish Monitoring Plan	36
2021 Riparian Areas and Wetlands Monitoring Plans	37

References	
Appendix A – Existing Monitoring Sites with River Mile and Entity Station Name	1
Appendix B – Monitoring Summary	8
Appendix C – 2021 List of Projects in the Cooperative Effort Area	9

Aquatic Resource Monitoring Plan Overview

The cooperative partners of Learning By Doing (LBD) are required through two intergovernmental agreements (IGA) to design and implement an Aquatic Resource Monitoring Plan (Plan). The purpose of the Plan as defined in the IGAs is to "implement a monitoring plan to identify undesirable changes in, and agree upon desired modifications to, the aquatic environment, and to measure the effectiveness of actions taken to protect or improve the aquatic environment." Further, the Plan sets agreedupon goals that "rely on existing data and new data gathering under existing programs to provide the primary source of information for designing the management goals and for prioritizing those goals and reaches where the goals will be applied." (IGA, 2012)

The Plan is developed on an annual basis by the LBD Monitoring Subcommittee following the approved process outlined in the LBD guidance document, Aquatic Resource Monitoring Planning Process (Learning By Doing Monitoring Subcommittee, May 1, 2019). The Plan is applicable to the Cooperative Effort Area (CEA), which includes the Colorado, Fraser and Williams Fork River basins, upstream of the Colorado River confluence with the Blue River.

The Plan achieves the following goals:

- Fosters an understanding of aquatic resources;
- Aids in effective decision making;
- Identifies changes in the aquatic environment;
- Identifies critical stream reaches;
- Highlights desired improvements, operations and management decisions;
- Prioritizes action steps;
- Evaluates effectiveness of restoration or other actions taken, including application of flow enhancements.

Plan Objectives

Monitoring priorities and objectives are evaluated on an annual basis. Objectives can be broad, such as monitoring aquatic health over the entire CEA, or they can be focused on monitoring changes that result from restoration projects. Therefore, the Plan objectives are dynamic and change from year to year in order to meet the established goals. The objectives of the 2021 Plan are to:

- Compile and summarize existing monitoring activities;
- Maintain a comprehensive stream temperature monitoring network to identify critical areas for stream temperature and to inform environmental water releases and evaluate their effectiveness;

- Assess sediment and characterize bed particle size distribution to evaluate flushing flows, accumulation of fines, and macroinvertebrate and fish spawning habitat;
- Assess the health of macroinvertebrate communities and monitor trends and changes;
- Ensure adequate monitoring in stream segments that are currently listed on Colorado's 303(d) List of Impaired Waters and identify segments in need of more monitoring;
- Assess the population and distribution of fish;
- Document riparian vegetation monitoring in the CEA;
- Document restorations projects within the CEA.

A detailed sampling plan for each objective follows. Unforeseen circumstances outside of our control can cause changes to the sampling plans.

Summary of Existing Monitoring Efforts

A summary of all monitoring efforts conducted within the CEA is compiled every few years. Refer to Appendix B – Monitoring Summary for the most recent summary maps and monitoring schedules, which were last updated in 2018. The monitoring summary is based on actual sampling that occurred during that year. LBD's monitoring is intended to complement existing monitoring efforts in the CEA; the summary is used to inform LBD's annual Plan.

Monitoring Summary Overview

Monitoring information is requested from and provided by several entities who collect data within the CEA. Information obtained includes site location, type of monitoring and frequency of sample collection. Several entities collect data within the CEA including:

- Bureau of Land Management (BLM)
- Colorado Department of Public Health and Environment/Water Quality Control Division (CDPHE/WQCD)
- Colorado Parks and Wildlife (CPW)
- Colorado River Water Conservancy District (River District)
- Denver Water
- East Grand Water Quality Board (EGWQB)
- Grand County (GC)
- Grand County Water Information Network (GCWIN)
- Learning By Doing (LBD)
- Northern Water
- Northern Water Municipal Subdistrict (Subdistrict)
- Trout Unlimited (TU)
- US Geological Survey (USGS)

While most of the entities listed collect data in the CEA every year, some do not. For example, the CDPHE only collects data in the CEA in certain years for review of water quality standards.

Given the number of different entities that collect data, there is a large amount of monitoring that takes place each year. In effort to normalize and streamline sampling efforts, each sampling station is assigned a river mile ID. The river mile ID is generated by mapping the geographic coordinates provided by the sampling entities and measuring how many miles away the site is from a reference point.

The river mile ID is composed of abbreviated text representing its water body (Table 1) followed by a numeric value representing the distance in miles. River mile zero is located at the most downstream portion of a waterbody, generally the confluence

with a larger river. For the Colorado River, river mile zero is at the CEA boundary line, which is the confluence with the Blue River. The river miles increase at upstream sites. For example, the river mile ID for the Colorado River 10 miles upstream of the boundary of the CEA is CR-10.

Assigning a river mile ID not only standardizes the naming convention of the sites but also allows for sites located in the same place but sampled by different entities to be grouped together as a single site. Table 1 lists the abbreviations used for the various waterbodies when assigning the River Mile IDs.

River Name	Site Abbreviation	Group
Arapaho Creek	AC	Upper Co
Blue River	BL	Lower Co
Bobtail Creek	BC	Williams Fork
Cabin Creek	СВ	Fraser
Cabin Creek North Channel	CBN	Fraser
Cabin Creek South Channel	CBS	Fraser
Little Cabin Creek	LCB	Fraser
Church Creek	СН	Upper Co
Colorado River	CR	Colorado
North Fork of Colorado	NF	Upper Co
Crooked Creek	СС	Fraser
East Inlet	El	Upper Co
Elk Creek	EC	Fraser
Fraser River	FR	Fraser
Grand Lake	GL	Upper Co
Granby Reservoir	GR	Upper Co
Granby Pump Canal	GRP	Upper Co
Hurd Creek	HC	Fraser
McQuery Creek	MQC	Williams Fork
Meadow Creek	MC	Fraser
North Inlet	NI	Upper Co
Ranch Creek	RC	Fraser
Ranch Creek Canal	RCC	Fraser
Reeder Creek	RDC	Lower Co
Roaring Fork	RF	Upper Co
Shadow Mountain Reservoir	SM	Upper Co
Saint Louis Creek	STC	Fraser
Steelman Creek	SC	Williams Fork
Stillwater Creek	ST	Upper Co
Trail Creek	TR	Upper Co
Vasquez Creek	VC	Fraser
Vasquez Creek Canal	VCC	Fraser
Little Vasquez Creek	LVC	Fraser
Williams Fork	WF	Williams Fork
Upper South Fork Williams Fork	USF	Williams Fork
South Fork Williams Fork	SWF	Williams Fork
Willow Creek Reservoir	WC	Upper Co
Willow Creek Pump Canal	WCP	Upper Co
Windy Gap Reservoir	WG	Middle Co
Windy Gap Pump Canal	WGP	Upper Co

Table 1 - River Mile Abbreviations

Since the CEA is large, the monitoring summary is geographically sectioned into smaller groups. The following groups are used:

- 1. Lower Colorado River Blue River to Williams Fork
- 2. Middle Colorado River Williams Fork to and including Windy Gap Reservoir
- 3. Upper Colorado River Upstream of Windy Gap Reservoir to Headwaters and including the Three Lakes and Willow Creek Reservoir
- 4. Fraser River and Tributaries
- 5. Williams Fork and Tributaries

There are several types of monitoring that can occur at any given site. The monitoring summary uses four categories to group the type of sampling done at a site:

- 1. Water Quality Includes analysis done at a laboratory (metals, nutrients, ions, etc.). This also includes measurements taken in the field (pH, temperature, flow, etc.).
- 2. Temperature Time series data collected with a sensor placed in the stream.
- 3. Habitat This includes macroinvertebrate, fish, sediment, and riparian area data collection.
- 4. Flow Sites where there is a gaging station.

The monitoring summary includes four parts for each geographic section:

- 1. Map The map shows the sites in the geographic section, labeled with the river mile ID and indicates what type of sampling is done at each site.
- Station List A list of the stations, which includes the river mile ID, the entity ID, a site description, the entity collecting data, and what type of data are collected at that site.
- 3. Parameter List A table of parameters that are collected in the geographic section. Parameters are grouped by sampling entity.
- 4. Monitoring Plan The sampling schedule, which shows when each parameter group is collected at each site. The plan is on a weekly schedule to account sampling that occurs several times during a month. The monitoring plan indicates where temperature and flow data are collected. Changes can occur in timing and frequency of sampling events; the timing of the sampling is estimated in the monitoring plan.

Existing Monitoring Summary

The existing monitoring summary site list includes 229 entity-specific sampling locations by 11 different entities. After assigning river mile IDs and grouping the sites accordingly, there are 117 sampling locations with unique river mile IDs. A complete list of the existing monitoring sites with river mile ID and the corresponding Entity ID is found in Appendix A.

Although effort is made to get the most accurate information pertaining to other entities monitoring efforts, some assumptions still need to be made when putting together the monitoring summary. In the existing monitoring summary these assumptions include:

- Denver Water collects quarterly and bi-annual samples at several sites. The quarterly samples were put into the monitoring summary in January, April, July and October. The biannual sampling was put into the monitoring summary in June and September.
- CPW collects fish data bi-annually and annually. The bi-annual sampling was put into the monitoring summary in April and September. The annual sampling was put into the monitoring summary in September.
- CPW monitoring is based on input from CPW, Fish Survey Reports and the Colorado River Ecology and Water Project Mitigation Investigations annual report.
- Information on monitoring efforts was not obtained from BLM. Monitoring done at sites in previous years was assumed to be continued. This includes monitoring at RDC-0.7 and WF-13.1.

One of the goals of the monitoring summary is to see where monitoring overlaps and try to streamline efforts. In the existing monitoring summary, there are only a few locations where there was duplicate monitoring:

- CR-22.1, CR-28.7, CR-31 These locations are in the Colorado River downstream of and around Windy Gap Reservoir. CPW is collecting additional macroinvertebrate data at these sites prior to the start of the river habitat restoration project.
- RC-1.1 There are two temperature monitoring locations in Ranch Creek, one maintained by the USGS and the other by GCWIN.
- FR-24 Both the EGWQB and Denver Water collect water quality samples at this location.

The complete existing monitoring summary is found in Appendix B – Monitoring Summary.

2021 Stream Temperature Monitoring Plan

Stream temperature is critical to aquatic life health. The streams in the CEA support cold water fish and macroinvertebrate communities. Each cold-water fish species has a unique range of temperatures in which individuals can survive, and an even smaller range that supports optimal growth, survival, and reproduction. If frequent or sustained, above optimum temperatures can limit individual growth, and even higher temperatures can increase mortality, limit populations, and alter community structure. A robust stream temperature monitoring network in the CEA provides continuous temperature data to help assess thermal regimes and aid in aquatic life protection.

The LBD stream temperature monitoring program objectives are to:

- Complement existing stream temperature monitoring efforts;
- Provide the LBD Operations Subcommittee with timely data to make informed decisions about releases of environmental water;
- Provide continuous stream temperature data to evaluate effectiveness of environmental water releases;
- Identify critical stream reaches for water temperature;
- Assess compliance with Colorado's stream temperature standards;
- Monitor and assess impacts of restoration efforts performed by LBD.

Data collected through this program are collected in accordance with and assessed against the state of Colorado's temperature standard criteria (Colorado Department of Public Health and Environment, Water Quality Control Division, March 2019) (Colorado Department of Public Health and Environment, Water Quality Control Commission, June 2019).

This program is reviewed annually.

Existing Temperature Monitoring Network

The existing temperature monitoring network consists of 65 sites in the CEA (one location is monitored by two entities as a quality control check point). Several entities maintain these sites: BLM, GCWIN, LBD, Northern Water and the USGS. Many stakeholders provide financial support to maintain the existing program; these stakeholders include LBD members as well as non-LBD members. A map of the 2021 monitoring sites is shown in Figure 1 and details of the program are included in the Monitoring Summary in Appendix B.

Figure 1 - Temperature Monitoring Sites in the CEA Note: Sites not shown include WF5.5, RC5.5, and RC5.8, which were added in 2020; refer to Appendix A.

2021 Changes to Temperature Monitoring Plan

The existing stream temperature monitoring network was analyzed for data gaps with respect to timeliness (is the data available when it is needed), impaired waters designation, spatial coverage, diversions, historical data, and the need for baseline data. Based on this assessment, all sites monitored in 2020 will be monitored again in 2021. There are no additional sites to add in 2021.

However, in response to the East Troublesome Fire and Williams Fork Fire that occurred in the fall of 2020, LBD has elected to preserve a contingency budget for additional visits in 2021 to three existing temperature monitoring sites that have the potential to be affected by heavy debris flows from the burn scarred areas of the wildfires. The three sites are, WC-0.5, WC-2.3, and WF-5.5. If additional visits are necessary, photo documentation will be recorded during each visit to these sites. Maps of the fire perimeter and these three site locations are shown below in Figures 2 and 3.

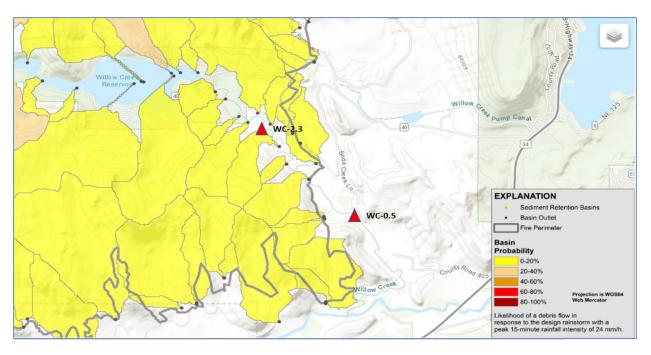


Figure 2 – East Troublesome Fire perimeter in relation to stream temperature sites on Willow Creek.

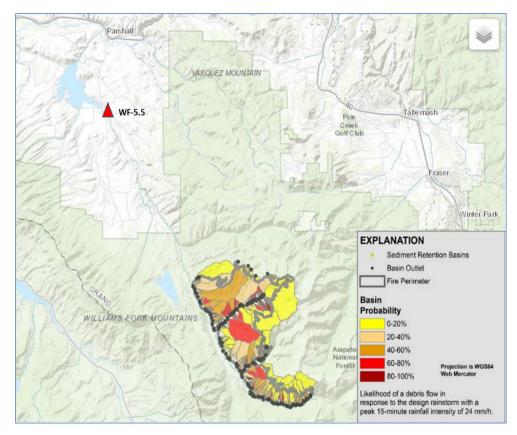


Figure 3 – Williams Fork Fire perimeter in relation to the stream temperature site on the Williams Fork River.

Changes to Monitoring Locations

LBD will retain its 11 temperature sites that were monitored in 2020 (Table 2). No changes to monitoring locations will occur in 2021.

Changes in Timeliness of Data Transmission

Review of the current schedule for data downloads and processing showed that there was sufficient information available to inform operation discussions during the weekly LBD Operations Subcommittee calls. Therefore, no changes were made to the frequency of data transmission for 2021.

2021 LBD Temperature Monitoring

The 2021 LBD temperature monitoring program consists of 11 sites (Table 2). At three sites, data are downloaded, compiled, and distributed to the LBD Operations Subcommittee on a weekly basis from June 17 - September 15. At the remaining 8 sites, data are download biweekly from April – October and the data are compiled and shared at the end of the monitoring season.

River Mile ID	Station Description	Latitude	Longitude	Download Frequency
STC-5.4	St Louis Creek at Fraser Experimental Forest HQ	39.907710	-105.87951	Bi-weekly
STC-0	St Louis Creek upstream of confluence with Fraser River	39.95175	-105.81471	Weekly (Jun - Sep)
RC-5.8	Ranch Creek upstream of revegetated area	39.978214	-105.79187	Bi-weekly
RC-5.1	Ranch Creek downstream of revegetated area	39.984244	-105.79467	Bi-weekly
FR-15	Fraser River upstream of Fraser Flats River Habitat Project	39.981338	-105.82494	Bi-weekly
FR-14.4	Fraser River downstream of Fraser Flats River Habitat Project	39.986438	-105.82738	Bi-weekly
FR-3.5	Fraser River at Hwy40 in Granby	40.081027	-105.93127	Weekly (Jun - Sep)
WC-2.3	Willow Creek upstream of Bunte Highline Ditch	40.136965	-105.92881	Bi-weekly
WC-0.5	Willow Creek upstream of confluence with Colorado River	40.123601	-105.91284	Bi-weekly
CR-2.3	Colorado River upstream Hwy 9 Bridge in Kremmling	40.0421	-106.3714	Weekly (Jun - Sep)
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	39.999510	-106.17946	Bi-weekly

Table 2 – 2021 LBD Temperature Monitoring Plan

Station Operation, Maintenance and Data Delivery

Except for CR-2.3, GCWIN maintains all the stations in the LBD temperature monitoring program. CR-2.3 is maintained by the BLM in cooperation with GCWIN and LBD.

Station Operation

Stream temperature monitoring follows guidelines set forth in the SOP, <u>2020 GCWIN</u> <u>Stream Temperature Monitoring Protocols</u>. The manual includes quality assurance and quality control (QAQC) protocols. A field logbook is filled out for each site visit.

Station Maintenance Protocol:

- GCWIN/BLM will install HOBO Water Temp Pro v2 Data-loggers (Part # U22-001, Onset Computers, Inc., Bourne, Massachusetts) All sensors will be calibrated using the 2-point water bath method. Sensors outside of the range including +/- 0.1 °C annual drift will not be used.
- Sensors with a battery voltage below 2.4 V will not be used.
- All sensors use the same shuttle for downloading data to a computer Onset's Hobo Optic USB Base Station U-4.
- Sensors are set to record data every 15 minutes, i.e. at 0:00, 0:15, 0:30, and 0:45 minutes on the hour. They record temperature in °C as well as recording battery voltage.
- For sensors not deployed year-round, place in river before May 1st.
- Ideally sensor is placed in the thalweg, or mid-50% of stream width, assuming these locations are in flowing water. Above all, sensor needs to be located in flowing, deep water.
- If sensor is not in the thalweg/mid 50%, it needs to be placed in a minimum of 18" of flowing water, preferably in the river "bubble line". The water needs to be sufficiently flowing so silt does not accumulate on sensor and flow is comparable to that seen in thalweg.
- Data handling includes download, QA/QC, post-processing, storage, and distribution of temperature data.

Additional Protocols Added for 2021 Monitoring:

- Rig considerations for potential increased debris during spring runoff:
 - Field staff will add an extra rope to secure the rig to the riverbank. This gives the rig two tie down points for added security.
 - Field staff have drilled larger holes into all sensor housing rigs.
 - 3 fail safe attachments for rig housing.
 - U-bolt
 - Wire cable (attached to rope and sensor)
 - Zip tie
- Field technician will take photos at any site where the rig is found displaced, or anytime photo documentation would provide helpful visual information.
- At the three stream temperature sites potentially impacted by the fire area, photos will be taken each site visit.
- Three photos will be taken. Looking upstream, looking downstream, and looking across the river/site.
- Field technician will take additional written notes regarding field conditions.

Data Management

Data management includes download, QAQC, storage, and distribution of temperature data. GCWIN's Executive Director conducts final QAQC on all stream temperature data. Data from sites with weekly downloads are provided to the LBD Operations Subcommittee in an agreed upon timeframe to support operational decisions regarding environmental water releases. The final stream temperature data are provided to LBD in an Excel spreadsheet by December 1 of each year. The data are stored in GCWIN's database, which is publicly accessible.

Funding

Costs for the 2021 temperature monitoring are shared among some LBD partners. The partners each pay a percentage of the total cost. The cost distribution for 2021 is:

LBD Partner	Contribution %
Grand County	25%
Denver Water	25%
Northern Water/Subdistrict	25%
River District	8.3%
TU	8.3%
LBD	8.3%
River District TU	25% 8.3% 8.3%

2021 Sediment Monitoring Plan

Aquatic life can be impacted by human-caused deposition of excessive sediment on stream and river bottoms, resulting in the loss of critical habitat for fish and macroinvertebrates, disrupting food-web dynamics, and reducing reproductive success. Harmful impacts can include smothering of gravels and cobbles in important spawning and feeding habitats, and the filling of interstitial spaces and pool habitat with fine sediments. These conditions may result in habitat loss for macroinvertebrates, a resultant reduction in fish food sources, and smothering and loss of oxygenation in important fish spawning habitats. Other undesirable impacts of sedimentation can include population changes to more pollution tolerant macroinvertebrate species, and extirpation of sensitive species (Colorado Water Quality Control Commission, Department of Public Health and the Environment, 2014).

The following is a summary of the LBD 2021 Sediment Monitoring Plan within the CEA. The objectives of the 2021 LBD sediment monitoring program are to:

- Collect data as needed to evaluate flushing flows in key reaches within the CEA;
- Report on physical conditions in the riffles at macroinvertebrate monitoring locations;
- Assess sediment size and embeddedness in trout spawning habitat in a manner that is compliant with the <u>Colorado Water Quality Control Commission Narrative</u> <u>Sediment Policy 98-1</u>;
- Monitor changes in particle distribution within the CEA, including the accumulation of fine sediment in interstitial spaces;
- Evaluate algal conditions within the streambeds of the CEA.

Existing Sediment Monitoring

In 2010, monitoring of river "substrate" began "...to document the habitat quality of select trout spawning bars along the Fraser and Colorado Rivers within Grand County in response to the annual stream flow regimes" (Tetra Tech and HabiTech, 2018). In 2019, what was formerly termed "substrate" sampling was changed to "sediment" sampling in order to be consistent with the Colorado Water Quality Control Commission (WQCC) *Guidance for Implementation of Colorado's Narrative Sediment Standard Regulation* #31, Section 31.11(1)(a)(i), Policy 98-1. Sediment sampling has historically consisted of core sampling and pebble counts associated with fish spawning habitats, pebble counts associated with fish spawning habitats, pebble measurements and evaluation of algal conditions.

Core Sampling in Trout Spawning Habitat:

A quantitative method used to assess fine sediment in trout spawning beds involves identifying trout spawning bars from fish redd surveys in the fall and sampling with a

McNeill-Ahnell¹ core sampler, which is 15 cm in diameter and 6 inches deep. The sampler is pushed into the gravel bed as far as it will go, and then the core is removed and sifted and sieved to identify particle size in the sample. The method is best suited for evaluating salmonid spawning sites with smaller substrate, such as pebbles and gravel. Samples can be sorted on site with sieves ranging from 75 to 0.074 mm, or sent to a lab for dry sieve analysis.

A 150 ml suspended sediment sample should also be collected from the water/fine sediment mixture remaining in the core sampler, and results should be reported in mg/L. This provides an estimate of the fine sediments, such as silt and clay that are also within the spawning bed.

Several years of core sample collections during high flow years have yielded similar results and have resulted in a recent emphasis on core sampling only during low flow years. Data collected will be compared to past data from the CEA.

River Mile ID	Site Description	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
FR-5.5 (F9)	Fraser River between the Fraser Canyon and Granby (Granby Ranch)	x	x	x	х	x	x	х	х			х	х
RC-1.1 (F-RC2)	Ranch Creek below Meadow Creek (Miller Property)	х	х	х		х			х			х	х
CR-21.9 (CR4)	Colorado River below Pioneer Park at Hot Sulphur Springs (X ³)	X1	X1	x ²	X ²	x ³		Х ³	X ³				
CR-14.9 (CR5)	Downstream of Williams Fork confluence and Parshall	х	х	х	х	х	х	х	х	х		х	х
CR-9.1 (CR6)	Downstream of KB Ditch	х	х	х	х	х	х	х	х	х		х	х

Table 3: Core Sampling Site Locations

No core sampling in 2019

CR4 Chimney Rock X¹ was discontinued in 2011 due to absence of spawning beds

CR4 Paul Gilbert X² discontinued in 2014 due high flows cut off and dewatered the spawning channel site

¹ McNeil, W.J. and W.H. Ahnell (1964) Success of pink salmon spawning relative to size of spawning bed materials. US Fish and Wildlife Special Scientific Report, Fisheries No. 469. US Department of Interior, Washington DC

Learning By Doing 2021 Aquatic Resource Monitoring Plan

Modified Wolman Pebble Counts^{2,3}:

This widely used method samples coarse riverbed material in streams as a way of estimating cumulative distribution of grain sizes and the degree of embeddedness. It is a geomorphic measure, which is a good method for identifying median bed particle size.

Pebble counts will be conducted at all macroinvertebrate sites with the sampling grid method and a Gravelometer as required by Colorado WQCD Policy 98-1 (Table 4). Pebble counts are also used to assess salmonid spawning bars and macroinvertebrate habitats by utilizing the Sediment Tolerance Indicator Value (TIV_{SED}) as defined in Policy 98-1 (Colorado Water Quality Control Commission, Department of Public Health and the Environment, 2014).

Algae Presence and Embeddedness:

Percent algal cover and percent embeddedness will be estimated concurrent with pebble counts in 2021. For assessment of algae, a viewing bucket (a bucket with a clear bottom and intersection markings) was employed which measures the percentage of grid intersections where algae are present. A subset of the 400 particles picked up during the pebble counts across 10 transects were measured to find the depth to which they were buried in sediment to estimate the percent embeddedness. Photographs will be taken at each site during the survey to document representative observations and to calibrate surveys over time.

² Wolman, M.G. (1954) A method of sampling coarse river-bed material. Transactions American Geophysical Union 35(6) p. 951-956

³ Bevenger, G.S. and R.M. King (1995) A Pebble Count Procedure for Assessing Watershed Cumulative Effects. USDA Forest Research Paper, RM-RP-319

Table 4: Pebble Count and Algae As	ssessment Site Locations
------------------------------------	--------------------------

River	River Station Description	Monitoring	TIV	Years Monitored						
Mile ID	Station Description	Frequency	Score	2017	2018	2019	2020	2021		
FR-27.2	Fraser River upstream Jim Creek/Mary Jane entrance	1x/2-3 yrs			X ^{New}					
FR-25.1	Fraser River upstream of UP Railroad discharge	Annually	Х			XNew	Х	Х		
FR-23.4	Fraser River upstream of Winter Park San District	Annually	Х	Х	Х	Х	Х	Х		
FR-20	Fraser River at Rendezvous Bridge	Annually	Х	Х	Х	Х	Х	Х		
FR-15	Fraser River upstream of Fraser Flats restoration	Annually	Х	Х	Х	Х	Х	Х		
FR-14	Fraser River upstream of Tabernash	Annually	Х	Х	Х	Х	Х	Х		
FR-12.4	Fraser River upstream of Fraser Canyon	1x/2-3 yrs		Х			Х			
FR-1.9	Fraser River upstream of Granby Sanitation District	1x/2-3 yrs		Х		Х		Х		
STC-0	Saint Louis Creek at Fraser River	1x/2-3 yrs	Х		χ_{New}	Х				
RC-1.1	Ranch Creek downstream of Meadow Creek	Annually	Х	Х	Х	Х	Х	Х		
CR-31	Colorado River upstream Fraser and Windy Gap	Annually		Х	Х	Х	Х	Х		
CR-28-7	Colorado River downstream of Windy Gap	Annually	Х	Х	Х	Х	Х	Х		
CR-23.5	Colorado River upstream of Hot Sulphur Springs	***		Х	Х	Х	Х			
CR-22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	Annually						Х		
CR-16.7	Colorado River upstream of Williams Fork	Annually	Х	Х	Х	Х	Х	Х		
CR-9.1	Colorado River at CR39 Bridge at KB Ditch	Annually****		Х	Х	Х	Х	Х		
CR-7.4	Colorado River downstream Troublesome Creek	Annually*			XNew	Х	Х	Х		
CR-1.7	Colorado River upstream of the Blue River	Discontinued in 2021**			XNew	Х	**			

Riffle Stability Index (RSI):

This method estimates the mobile sediment fraction in a river's riffle, that is, how the riverbed is shifting in response to flow. It is another geomorphic measure, revealing how substrate is moving in riffles, not a habitat measure that provides a metric that estimates the quality of habitat. A river receiving excessive sediment will have smaller, finer particles accumulated in the riffle when compared to a river in dynamic equilibrium without excessive sedimentation. Riffle Stability Index values greater than 70 indicate a riffle that is somewhat loaded with sediment, and values greater than 85 indicate excess sediment. High levels of sediment deposition are symptoms of an unstable and continually changing environment that becomes unsuitable for aquatic life.

To be able to compare to historic data and move towards sampling in riffles, RSI measurements are recommended at three of the historical sediment core sample sites and six macroinvertebrate sites.

Table 5: Rif	fle Stability	Index Site	Locations
--------------	---------------	-------------------	-----------

River Mile ID	Site Description	2014	2015	2016	2017	2018	2019	2020	2021
FR-5.5 (F9)	Fraser River between the Fraser Canyon and Granby (Granby Ranch)	x	x	x	х			х	
RC-1.1 (F-RC2)	Ranch Creek below Meadow Creek (Miller Property)	х	х	х	х			х	
CR-21.9 (CR4)	Colorado River below Pioneer Park at Hot Sulphur Springs	х	х	х	х				х
CR-14.9 (CR5)	Downstream of Williams Fork confluence and Parshall	х	х	х	х				х
CR-9.1* (CR6)	Downstream of KB Ditch	х	х	х	х		х	*	х
FR-25.1	Fraser River upstream of UP Railroad discharge								
FR-23.4	Fraser River upstream of Winter Park San District						х	х	
FR-20	Fraser River at Rendezvous Bridge						х		х
FR-15	Fraser River upstream of Fraser Flats restoration						х	х	
FR-14	Fraser River upstream of Tabernash						х		х
FR-12.4	Fraser River upstream of Fraser Canyon								
FR-1.9	Fraser River upstream of Granby Sanitation District						х		
STC-0	Saint Louis Creek at Fraser River								
RC-1.1	Ranch Creek downstream of Meadow Creek							х	
CR-31	Colorado River upstream Fraser and Windy Gap						х		х
CR-28-7	Colorado River downstream of Windy Gap						х	х	х
CR-22.9	Colorado River upstream of Hot Sulphur Springs						х	х	
CR-16.7	Colorado River upstream of Williams Fork						х		х
CR-7.4	Colorado River downstream Troublesome Creek						х		х
CR-1.7	Colorado River upstream of the Blue River						х		

No RSI sampling in 2018

*CR-9.1 was supposed to be included but was erroneously omitted in 2020

2021 Changes to Sediment Monitoring Plan

Generally, monitoring sites are intended to provide a long-term record. It is anticipated that only minor changes in the location of the sites would occur from one year to the next. During the annual review of the monitoring program, sites may be added or removed, especially in the short-term. As the sediment monitoring program for LBD is evolving, changes may need to take place in the list of sites to better meet the objectives of the program.

In 2021, a new monitoring location will be added to the Williams Fork watershed to show potential impacts from the Williams Fork Fire. The long-term frequency is to be determined. This site will coincide with macroinvertebrate monitoring.

Historic core sampling at spawning beds will occur at all 5 sampling sites, however the 100-count pebble count that was collected simultaneously will be discontinued. The Subcommittee determined that we would be unable to find a tight correlation between the two methodologies. Additionally, core sampling is our longest running dataset, and it is integral to keep that continuity. In 2022, the Subcommittee will reevaluate the frequency of core sampling to potentially reduce costs.

Site CR-23.5 will be discontinued in 2021 because the site location has been incorrect and has erroneously referred to as CR-22.9 in reports. The correct location is CR-22.1 which will correlate with macroinvertebrate monitoring.

2021 LBD Sediment Monitoring

Methods for sediment monitoring in 2021 will be the same that were used in 2020 and will build on historic monitoring efforts in the CEA. The changes outlined above are additional monitoring efforts to build upon the current monitoring program. Sediment monitoring in 2021 will be a comprehensive measure of the trout spawning and macroinvertebrate habitat.

Monitoring Sites and Sampling Frequency

The sediment monitoring plan includes:

- 400 count pebble counts that are compliant with Water Quality Control Commission Policy 98-1, and algae assessment at each of the 2021 macroinvertebrate sites (Table 1).
- Sediment core sampling at all 5 of the historical core sample sites (Table 2).
- RSI at 3 of the historical core sampling sites and at 6 riffle sites (Table 3).

In 2021, pebble counts will be collected to accompany all macroinvertebrate sampling sites, regardless of whether the macroinvertebrate site is part of a permit requirement, part of an existing monitoring program, or a new site as recommended by the LBD monitoring committee. All sampling will be conducted once in the early fall and within 2 weeks of the macroinvertebrate monitoring.

Table 6: Summary of 2021 Sediment Monitoring

River Mile ID	Station Description	Pebble Counts Algae Embeddedness	RSI	Core Sample	Entity
FR-27.2	Fraser River upstream Jim Creek/Mary Jane entrance				LBD
FR-25.1	Fraser River upstream of UP Railroad discharge	Х			LBD
FR-23.4	Fraser River upstream of Winter Park San District	Х			LBD
FR-20	Fraser River at Rendezvous Bridge	Х	Х		LBD
FR-15	Fraser River upstream of Fraser Flats restoration	Х			LBD
FR-14	Fraser River upstream of Tabernash	Х	Х		LBD
FR-12.4	Fraser River upstream of Fraser Canyon				LBD
FR-1.9	Fraser River upstream of Granby Sanitation District	Х	Х		LBD
STC-0	Saint Louis Creek at Fraser River				LBD
RC-1.1	Ranch Creek downstream of Meadow Creek	Х			LBD
CR-31	Colorado River upstream Fraser and Windy Gap	Х	Х		LBD
CR-28-7	Colorado River downstream of Windy Gap	Х	Х		LBD
CR-22.1	Colorado River upstream of Hot Sulphur Springs	Х			LBD
CR-16.7	Colorado River upstream of Williams Fork	Х	Х		LBD
CR-9.1	Colorado River at CR39 Bridge at KB Ditch	Х			LBD
CR-7.4	Colorado River downstream Troublesome Creek	Х			lbd/ilvk
CR-1.7	Colorado River upstream of the Blue River. Will sample at alternate location that allows for sediment sampling.	Х			lbd/ilvk
WF-13.1	Williams Fork downstream of Henderson Mill	Х			LBD
FR-5.5 (F9)	Fraser River between the Fraser Canyon and Granby (Granby Ranch)			Х	LBD
RC-1.1 (F-RC2)	Ranch Creek below Meadow Creek (Miller Property)			Х	LBD
CR-22.1 (CR4)	Colorado River below Pioneer Park at Hot Sulphur Springs		Х	Х	LBD
CR-14.9 (CR5)	Downstream of Williams Fork confluence and Parshall		Х	Х	LBD
CR-9.1 (CR6)	Downstream of KB Ditch		Х	Х	LBD

Data Reporting

Data analysis will be completed by the end of 2021, and a final report will be provided to LBD in early 2022.

Funding

Costs for the 2021 sediment monitoring are shared among some LBD partners. The partners have agreed to pay a percentage of the total monitoring cost based on the following allocation:

LBD Partner	Contribution %
Grand County	25%
Denver Water	25%
Northern Water/Subdistrict	25%
River District	8.3%
TU	8.3%
LBD	8.3%

In addition, ILVK funds 50% of the monitoring costs for the two sites in the Colorado River that are associated with the ILVK restoration project (CR-7.4 and CR-1.7). The remaining costs at these two sites were covered by the above LBD partners at their respective contribution percentage.

2021 Macroinvertebrate Monitoring Plan

Macroinvertebrate (aquatic organisms) communities are a good indicator of overall stream health. Macroinvertebrate communities are sensitive to a wide range of environmental disturbances and pollution. While water quality monitoring provides a snapshot of conditions at a specific time, it can fail to capture changes in water quality that may occur between sampling events. The effects of changes in water quality on macroinvertebrate communities can linger, making macroinvertebrate monitoring a good tool for detecting fluctuating environmental conditions. Changes in macroinvertebrate communities can signal impacts from urban development as well as changes in land use, the riparian habitat, or stream channel. Community diversity and presence (or absence) of certain sensitive species are indicators of the biological and ecological integrity of the rivers.

The following is a summary of the LBD 2021 macroinvertebrate monitoring plan within the CEA. The objectives of the 2021 LBD macroinvertebrate monitoring program are to:

- Complement existing monitoring efforts;
- Assess the existing state of macroinvertebrate communities in the CEA;
- Monitor trends and changes to the health of the macroinvertebrate communities;
- Assess compliance with Colorado's aquatic life standard;
- Monitor and assess impacts of restoration efforts performed by Learning by Doing.

Data collected through this program are assessed using the Colorado Water Quality Control Division's (Division's) Multi Metric Index (MMI) to determine compliance with Colorado's aquatic life standard (Colorado Department of Public Health and Environment, Water Quality Control Commission, Aug 2017). LBD has elected to compute additional standard metrics, including several key measurable indicator metrics, as a part of this program to provide a complete assessment of the macroinvertebrate community. The methods utilized are consistent with the Division's protocols for collection and analysis of macroinvertebrates.

This program is reviewed annually.

Existing Macroinvertebrate Monitoring

Existing macroinvertebrate monitoring consists of 29 sites in the CEA. Locations of the sites are included in Appendix A – Existing Monitoring Sites with River Mile and Entity Station Name.

Moffat Project and WGFP 401 Certification Compliance Monitoring

Denver Water and the Subdistrict are both required to conduct annual macroinvertebrate monitoring at 7 sites in the LBD CEA to comply with the conditions of the Moffat Project and Windy Gap Firming Project 401 Certifications (Colorado Department of Public Health and Environment, Water Quality Control Division, Moffat, 2016) (Colorado Department of Public Health and Environment, Water Quality Control Division, WGFP, 2016).

Denver Water's 401 Certification requirement includes 4 sites; 3 in the Fraser River and 1 in Vasquez Creek, upstream of Winter Park. The Subdistrict's 401 Certification requirement includes 3 sites on the Colorado River downstream of Windy Gap Reservoir. In addition, the Subdistrict annually monitors a site that is not part of it's 401 Certification requirement but was deemed important to provide contextual information for the other 3 sites. In total, eight sites are included in the monitoring programs for Denver Water and the Subdistrict as shown in Table 6.

River Mile ID	Station Description	Entity	401 Permit
FR-23.2	Fraser River upstream of Winter Park San District	Denver Water	Yes
FR-20	Fraser River at Rendezvous Bridge	Denver Water	Yes
FR-14	Fraser River upstream of Tabernash	Denver Water	Yes
VC-0	Vasquez Creek at the Town of Winter Park	Denver Water	Yes
CR-31	Colorado River upstream of Fraser and Windy Gap	Subdistrict	Yes
CR-28.7	Colorado River downstream of Windy Gap Sul		Yes
CR-22.9	Colorado River upstream of Hot Sulfur Springs Subdistrict		Yes
CR-16.7	Colorado River upstream of Williams Fork	Subdistrict	No

Table 7 - Denver Water and Northern Water's Subdistrict's Macroinvertebrate Monitoring Sites
--

Subdistrict's Habitat Project Macroinvertebrate Monitoring

The Windy Gap Firming Project 401 Certification requires macroinvertebrate monitoring within the Kemp Breeze Habitat Project to assess the effects of restoration. This condition requires pre-project monitoring at 2 sites. (Colorado Department of Public Health and Environment, Water Quality Control Division, WGFP, 2016). Restoration in the Kemp Breeze area downstream of Parshall, CO began in 2021. The Subdistrict collected samples at 3 sites in 2020. Sampling will occur at the same 3 sites 2 years after the project is complete.

Northern Water's Baseline Macroinvertebrate Monitoring

In addition to the macroinvertebrate monitoring the Subdistrict does to comply with the WGFP 401 Certification, Northern Water conducts baseline macroinvertebrate monitoring for the C-BT and Windy Gap Projects every 3-5 years. Northern Water's baseline monitoring will be conducted in 2021 at 5 additional sites in the headwaters of the Colorado River upstream of Windy Gap Reservoir.

2021 Changes to Macroinvertebrate Monitoring Plan

Generally, monitoring sites are intended to provide a long-term record. It is anticipated that only minor changes in the location of the sites would occur from one year to the next. During the annual review of the monitoring program, sites may be added or removed, especially in the short-term. As the macroinvertebrate monitoring program for LBD is evolving, changes may need to take place in the list of sites to better meet the objectives of the program. Sites that are established specifically to assess the effectiveness of restoration projects might be monitored on a short-term basis and have reduced sampling frequency or be discontinued once a post project baseline is established.

Criteria for Determining Sampling Frequency

Changes in macroinvertebrate communities can occur as a result of a variety of factors, such as land-use changes, pollution, hydrology, stream restoration, agricultural diversions, highway maintenance activities, and natural events such as droughts, floods and wildfire. Knowledge and understanding of activities taking place in the watershed should therefore inform the need for and frequency of sampling at any given site. Some amount of inter-annual variability is to be expected due to varying hydrology even at sites subject to stable watershed influences.

Assessment of the macroinvertebrates present can provide a good understanding of the current health of the community. The LBD program includes several metrics that are considered key measurable indicators of macroinvertebrate health; each has a defined numeric threshold that indicates the level of health of a community. (See *Reporting and Assessment Metrics* below).

Based on knowledge of activities in the watershed and scores of the key measurable indicators, the following guidelines can be used to inform monitoring decisions:

- Sites where there are good scores for the key measurable indicators and have no known/identified stressors likely to adversely impact macroinvertebrate communities can be sampled every 2–3 years.
- When available, historical data should be reviewed to evaluate potential changes or lack thereof. Sites displaying no changes in key measurable indicator

scores can be sampled every 2–3 years. Sites displaying a range of key measurable indicator scores should be sampled annually.

• Where impacts from changes in land-use, known stressors and/or restoration are expected, samples should be collected annually.

Changes to Sampling Frequency

In 2021 the monitoring frequency at CR-9.1 was changed from once every 2 – 3 years to annually. This site is upstream of the Irrigators Living in the Vicinity of Kremmling restoration project and is a key location in the Colorado River due to the proximity to the KB Ditch.

New Monitoring Sites

After reviewing the spatial distribution of site locations and areas of known watershed disturbances, no new sites will be added to LBD macroinvertebrate sampling program.

2021 LBD Macroinvertebrate Monitoring

The 2021 LBD macroinvertebrate monitoring program consists of 15 sites; 3 sites in the Colorado River, 6 sites in the Fraser River, 2 sites in Fraser River tributaries (Ranch Creek and Saint Louis Creek) and 4 sites in Williams Fork (Table 7). The monitoring frequency is site specific and varies from annual sampling to sample collection every 2–3 years. Several of the sampling locations are sites that will be monitored long-term to provide a baseline of data to track changes. Other sites are specific to restoration or anticipated restoration projects and may be monitored only for the duration of the project.

Table 7 lists the all the macroinvertebrate sites monitored by LBD, indicates sampling frequency at each site, what years the sites were monitored, and which sites are project specific. For some of the new sites (added to the program in 2018 or 2019), a baseline data set needs to be established prior to determining what frequency monitoring will occur.

For 2021, macroinvertebrate sampling will be conducted at 11 out of the15 LBD sites. The locations of the 2021 sampling sites are shown in Table 8. In the case of an unauthorized discharge event by UPRR, an additional sample will be collected at the site downstream of the discharge, but the timing of sample collection will be different.

River Mile ID	Station Description	Monitoring Frequency	2017	2018	2019	2020	2021	Project Specific
FR-27.2	Fraser River upstream of Jim Creek and Mary Jane entrance	1x per 2-3 years		XNew				No
FR-25.1	Fraser River upstream of UP Moffat Tunnel discharge	Annually			XNew	Х	Х	No
FR-TBD	Fraser River downstream of UP Moffat Tunnel discharge	As needed			New		Χ1	No
FR-15	Fraser River upstream of Fraser Flats restoration	Annually	Х	Х	Х	х	Х	Yes
FR-12.4	Fraser River upstream of Fraser Canyon	1x per 2-3 years	Х			Х		No
FR-1.9	Fraser River upstream of Granby Sanitation District	1x per 2-3 years	Х		Х		Х	No
STC-0	Saint Louis Creek at Fraser River	1x per 2-3 years		XNew				No
RC-1.1	Ranch Creek downstream of Meadow Creek	Annually	Х	Х	Х	х	Х	No
CR-9.1	Colorado River at CR39 Bridge at KB Ditch	Annually	Х	Х	Х	Х	Х	No
CR-7.4	Colorado River downstream of Troublesome Creek	TBD		XNew	Х	х	Х	Yes
CR-1.7	Colorado River upstream of the Blue River	TBD		XNew	Х	Х	Х	Yes
WF-13.1	Williams Fork downstream of Henderson Mill	1x per 2-3 years		XNew			Х	No
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	TBD		XNew	Х	Х	Х	Yes
WF-2	Williams Fork downstream of Williams Fork Reservoir	TBD		XNew	Х	Х	Х	Yes
WF-0.5	Williams Fork downstream of Reservoir at Kemp Breeze	TBD			XNew	Х	Х	Yes

Table 8 - LBD Macroinvertebrate Sampling Sites and Years Monitored

¹ Sample collected only in the event of an unauthorized discharge from UPRR. This site was added to the program in 2019 but monitoring has not been needed to date.

Table 9 - 2021 LBD Macroinvertebrate Monitoring Sites

River Mile ID	Station Description	Latitude	Longitude	
FR-25.1	Fraser River upstream of UP Railroad discharge	39.8775	-105.7535	
FR-15	Fraser River upstream of Fraser Flats restoration	39.9813	-105.8249	
FR 12.4	Fraser River upstream of Fraser Canyon	40.0087	-105.8480	
RC-1.1	Ranch Creek downstream of Meadow Creek	39.9991	-105.8275	
CR-9.1	Colorado River at CR39 Bridge at KB Ditch	40.05377	-106.28945	
CR-7.4	Colorado River downstream of Troublesome Creek	40.0509	-106.3112	
CR-1.7	Colorado River upstream of Blue River	40.0465	-106.3730	
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	40.0004	-106.17975	
WF-2	Williams Fork downstream of Williams Fork Reservoir	40.03620	-106.20489	
WF-0.5	Williams Fork downstream WF Reservoir at Kemp Breeze	40.0561	-106.1825	

Collection Methods and Macroinvertebrate Analysis

Results obtained by consistent sampling practices and accurate identifications provide valuable information regarding short- and long-term changes in aquatic conditions. In addition, using analytical procedures that result in quantitative data (counting all bugs in a sample) provides an accurate and dependable dataset that makes changes more apparent. Quantitative data are especially useful when evaluating the effectiveness of restoration projects and/or mitigation of known stressors.

Changes in data collection methods introduce inconsistencies in a dataset and make it difficult to perform trend analyses or compare data between sites sampled through separate programs. In order to preserve the integrity of the dataset being developed by LBD, the sampling and analytical method used in 2020 are the same as those used in previous years. These methods are consistent with those used by Denver Water and the Subdistrict, which allows for integration with and comparison to these datasets.

Timberline Aquatics performs the sampling methods as follows:

• Sampling occurs during the period from late September to early October (fall) to target macroinvertebrate communities during annual periods of high density. This sampling period is consistent with the Colorado Water Quality Control Division's methodology for macroinvertebrate sampling (Colorado Department of Public

Health and Environment, Water Quality Control Commission, Aug 2017).

Timberline Aquatics collects the samples utilizing protocols approved by the Division's Section 303(d) Listing Methodology 2020 Listing Cycle (Colorado Department of Public Health and Environment, Water Quality Control Division,

Figure 4 - Sample Collection with a Hess Sampler

March 2019). Samples are collected with a Hess Sampler which is 13 inches in diameter and 16 inches tall with 500µm mesh. Three quantifiable Hess samples will be taken from riffle habitat at each of the sites. Each sample is taken from an area of similar size substrate and velocity (if possible) to avoid any bias from these physical parameters when making comparisons among sites (Figure 4).

Timberline Aquatics performs the macroinvertebrate analysis for all samples as follows:

- Identification and enumeration are done for the entire sample (i.e. all macroinvertebrates in the sample are counted).
- Macroinvertebrates are identified to the lowest practical taxonomic level consistent with the Operational Taxonomic Unit (OTU) developed by the Division, which consists of genus or species for mayflies, stoneflies, caddisflies, and many dipterans. Chironomidae will be identified to the genus level.
- As part of the quality control protocols, all sorted macroinvertebrate samples and approximately 10% of identifications are checked by another qualified taxonomist.

Assessment Metrics

The LBD macroinvertebrate data is assessed by looking at a set of 13 metrics or biological indicators. Together, these metrics provide the information needed to best meet the objectives of the program. Six of the 13 metrics are considered key measurable indicators; these have vetted thresholds that demonstrate whether the community is healthy or stressed. Table 9 provides a description of each of the metrics. Table 10 shows the key measurable indicators and which metrics apply to each of the specific program objectives.

Reporting

Timberline Aquatics provides sampling results to the LBD Monitoring Subcommittee. The final data files/reports include:

- An Excel file that includes a species list and count of all identified macroinvertebrates for each of the three samples at each site;
- Multi-Metric Index (MMI) scores as well as the full Ecological Data Application System (EDAS; a Microsoft Access database) output in Excel Spreadsheet format;
- Calculation of 13 metrics for each site (Table 10). Except for MMI and TIV, the metrics are calculated based on the full data set, not the subsampled (300 count) datasets;
- A written summary of the macroinvertebrate sampling including sampling for Denver Water's and Northern Water's 401 Certifications.

Table 10 – Timberline Aquatics Reported Metrics and Description

Metric	Description			
Multi-Metric Index (MMI)*	Colorado WQCD assessment tool. Provides a score from 0-100 which determines general health of aquatic community. A value for an acceptable score varies and is dependent on what ecoregion a site is located in. MMI is sensitive to a variety of pollutants and stressors.			
EphemeropteraRichness of distinguishable taxa in the orders EphemeropteraEphemeropteraMarginian (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies). These are most sensitive taxa in zones that transition from pristine to anthropogenic.Trichoptera (EPT)*Sensitive to many pollutants. EPT values below 20 can indicate stressors in nutrients.				
Hilsenhoff Biotic Index (HBI)* Indicator of nutrient enrichment as well as other stressors. A widely used in of organic pollution. High values of the index indicate a predominance of tolerant organisms (i.e., the sensitive species have been lost). Values range 0-10 and increase as water quality decreases. Auxiliary MMI metric.				
Shannon Diversity (SDI)* Indicator of macroinvertebrate community structure and balance. Does account for tolerance. Typical values range from 3-4, values less than 1 ir poor water quality. Auxiliary MMI metric.				
Tolerance Indicator Value (TIV _{sed})*	A biological indicator of impacts by excess fine sediments. The TIV _{sed} reflects both the reduction in relative abundance of sediment-sensitive taxa and the increase in relative abundance of sediment-tolerant taxa.			
% Chironomidae(Midges)Percent composition of chironomidae taxa. Chironomidae are tolea high score indicates a stressed environment. High percentage conhigher nutrients and sedimentation.				
% EPT excluding Baetis Percent composition of EPT taxa. These are the most sensitive taxa in zor transition from pristine to anthropogenic. Baetis not included because the higher tolerance value and can skew results. Sensitive to many pollutor				
% Intolerant Taxa	% composition of intolerant taxa.			
% Tolerant Taxa	% composition of tolerant taxa. Based on tolerance values of 7 or greater.			
% Hydropsychidae of Trichoptera	% Trichoptera (caddisfly) that is of the family-level Hydropsychidae. Tolerance values range from 2-5. Fine sediment can interfere with feeding. Sensitive to ammonia. May be good fish food.			
Total Taxa Richness	Total number of identifiable taxa, indicator of general community health and stability. Sensitive to metals.			
Pteronarcys Californica Density	Pteronarcys Californica abundance, mean number per square meter.			
Total Density	Macroinvertebrate abundance mean number per square meter. Useful when paired with other metrics.			
*Key Measurable Indicator				

*Key Measurable Indicator

Table 11 - Metric and Objectives

Metric	Key Measurable Indicator	Assess General Health	Monitor Trends and Changes	Restoration Assessment	Regulatory Compliance	Pollutant Specific	Support Fisheries
MMI	Х	Х	Х	Х	Х	Х	Х
EPT	Х		Х	Х		Х	Х
HBI	Х	Х	Х	Х	Х	Х	
Shannon Diversity	Х	Х	Х	Х	Х		Х
TIV	Х		Х	Х	Х	Х	
% Chironomidae		Х	Х	Х		Х	
% EPT excluding Baetis		Х	Х	Х		Х	
% Intolerant Taxa		Х	Х	Х		Х	
% Tolerant Taxa		Х	Х	Х		Х	
% Hydropsychidae of Trichoptera			Х			Х	
Total Taxa Richness		Х	Х	Х		Х	
Pteronarcys Californica Density			Х	Х			Х
Total Density			Х	Х			Х

Funding

Costs for the 2021 macroinvertebrate monitoring will be shared among some LBD partners. The partners each pay a percentage of the total cost. The cost distribution for 2021 is:

LBD Partner	Contribution %			
Grand County	25%			
Denver Water	25%			
Northern Water/Subdistrict	25%			
River District	8.3%			
TU	8.3%			
LBD	8.3%			

In addition, ILVK will fund 50% of the monitoring costs for two sites in the Colorado River that are associated with the ILVK restoration project (CR-7.4 and CR-1.7). Denver Water will fund 50% of the monitoring costs for three sites on William Fork that are associated with their restoration projects (WF-5.5, WF-2 and WF-0.5). The remaining costs at these five sites will be covered by the LBD partners at their respective contribution percentage.

2021 303(d) Evaluation List and Monitoring Plan

Learning By Doing (LBD) evaluates impairments identified in Regulation #93 – Colorado's Section 303(d) List of Impaired Waters and Monitoring and Evaluation (M&E) List (Colorado Department of Public Health and Environment, Water Quality Control Commission. Reg #93, 2021⁴) within the CEA. LBD strives to monitor segments with known impairments.

Regulation #93 consists of three components:

- The list of Water-Quality-Limited Segments Requiring total maximum daily loads (TMDLs) fulfills section 303(d) requirements of the federal Clean Water Act. Which requires states to submit to the U.S. Environmental Protection Agency a list of those waters for which technology-based effluent limitations and other required controls are not stringent enough to implement water quality standards.
- 2. Colorado's Monitoring and Evaluation List identifies water bodies where there is reason to suspect water quality problems, except there is uncertainty regarding one or more factors, such as the representative nature of the data. For example, suppose It is unclear whether the cause of impairment is attributable to pollutants instead of pollution in impaired water bodies. In that case, they go on the Monitoring and Evaluation List. The Monitoring and Evaluation (M & E) list is a state-only document not subject to EPA approval.
- 3. The list of Water-Quality-Limited Segments Not Requiring a TMDL identifies segments where data indicates at least one classified use is not supported, but a TMDL is not needed.

The objectives of the 303(d) Monitoring Program are to:

- Evaluate the current 303(d), and M&E listed water bodies within the CEA;
- Evaluate current water quality sampling programs of various agencies to determine if 303(d) listed waters are being monitored appropriately;
- Develop a monitoring plan for segments that are determined to need additional sampling.

2021 Review of Impaired Segments

In June 2021, the Water Quality Control Commission adopted the most recent version of Regulation #93, which became effective on August 14, 2021. The recently adopted 303(d) and M&E list shows seventeen stream segments listed as impaired within Grand County; Ten of these segments, COUCUC01, COUCUC02, COUCUC03, COUCUC05, COUCUC09, COUCUC10a, COUCUC10c, and five water bodies in segments COUCUC12 and COUCUC13 are located within the LBD CEA as shown in Figure 5. The twelve listed segments within the LBD CEA the impaired uses are Recreation, Water Supply, and Aquatic Life Use. The primary analytes of concern are arsenic (total), E. coli, Copper

(dissolved), Iron, Manganese, Selenium, Silver, Zinc, pH, stream/lake/reservoir temperature, and macroinvertebrates. In addition, there are two new listings within the CEA for lake/reservoir temperature. These changes are detailed below.

In regards to arsenic, it is worth noting arsenic is a national/statewide water quality issue. Arsenic is a naturally occurring, toxic element found in soil, bedrock, and water. Arsenic is colorless and odorless as well as a known carcinogen. Arsenic regulation at the federal level is under multiple agencies and seven different acts, including two associated with the Colorado Department of Public Health and Environment.⁵ In 2013, Colorado implemented a significant update to the arsenic water quality standards. These standards have led to some interesting and costly regulatory compliance solutions in Colorado. Unfortunately, at this time, there are no feasible treatment processes available to effectively treatment stream segments for arsenic.⁶

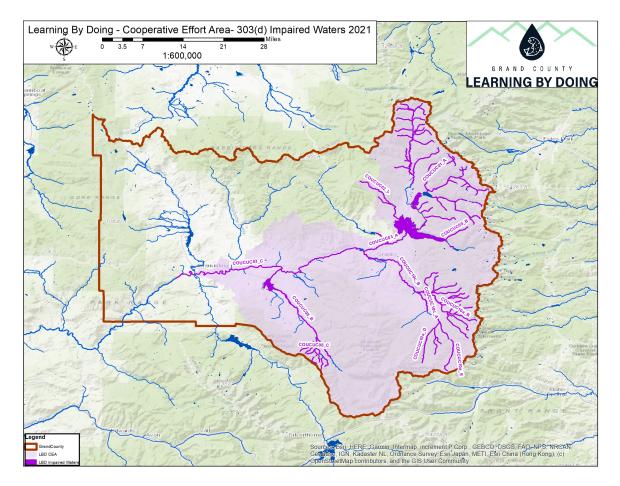


Figure 5. Grand County Impaired Waters.

Below is a detailed breakdown of the listed segment portions, analytes, and listing classifications:

1. <u>COUCUC01</u> Mainstem of the Colorado River, including all tributaries and wetlands, within Rocky Mountain National Park, or which flows into Rocky Mountain Park.

COUCUC01_A Mainstem of the Colorado River, including all tributaries

and wetlands, within or flowing into Rocky Mountain National Park Aquatic Life Use – Zinc (Dissolved) – 303(d) * New listing 2020

- 2. <u>COUCUC02</u> Mainstem of the Colorado River, including all tributaries and wetlands within, or flowing into Arapahoe National Recreation Area.
 - COUCUC02_C Colorado River from Shadow Mountain Reservoir to Granby Reservoir

Aquatic Life Use – Temperature – 303(d)

- COUCUC02_D Mainstem of Colorado River from North Inlet to Grand Lake
 - Aquatic Life Use Zinc (Dissolved) M&E List
 - Aquatic Life Use Silver (Dissolved) M&E List
 - Aquatic Life Use Copper (Dissolved) 303(d)
- COUCUC02_E Mainstem of East Inlet
 - Aquatic Life Use Zinc (Dissolved) M&E List
 - Aquatic Life Use Silver (Dissolved) M&E List
 - Aquatic Life Use Copper (Dissolved) 303(d)
- COUCUC02_I Arapaho Creek downstream of Monarch Lake Aquatic Life Use – Silver (Dissolved) – M&E List Aquatic Life Use – Temperature – 303(d)
- COUCUC02_L Stillwater Creek, including tributaries and wetlands, within or flowing into Arapaho Recreation Area
 Water Supply Use Arsenic (Total) 303(d)
 Water Supply Use Manganese (Dissolved) 303(d)
 Aquatic Life Use Temperature 303(d)

3. <u>COUCUC03</u> - Mainstem of the Colorado River from the outlet of Lake Granby to the confluence with Roaring Fork River.

• COUCUC03_A Colorado River from outlet of Lake Granby to Windy Gap Reservoir

Water Supply use - Arsenic - M&E List

• COUCUC03_B Colorado River from Windy Gap Reservoir to 578 Road Bridge.

Water Supply use – Arsenic – M&E List

• COUCUC03_C Colorado River from 578 Road Bridge to Gore Canyon.

Water Supply use – Arsenic – M&E List

Aquatic Life Use - Temperature - 303(d)

- 4. <u>COUCUC05</u> Mainstem of Willow Creek from the outlet of Willow Creek Reservoir to the confluence with the Colorado River.
 - COUCUC05_B Mainstem of Willow Creek from the outlet of Willow Creek Reservoir to the confluence with the Colorado River. Water Supply use – Arsenic – M&E List Water Supply Use – Manganese (Dissolved)
- 5. <u>COUCUC08</u> Mainstem of the Williams Fork River, including all tributaries and wetlands from the source to the confluence with the Colorado River, except for those tributaries listed in Segment 9.
 - COUCUC08_B Mainstem of Williams Fork River below Kinney Creek. Water Supply use – Arsenic – M&E List
 - COUCUC08_C Ute Creek and its tributarties
 Water Supply use Arsenic M&E List
 Aquatic Life Use Zinc (Dissolved) 303(d) List
- <u>COUCUC09</u> All tributaries to the Colorado and Fraser Rivers, including of all wetlands, within the Never Summer, Indian Peaks, Byers, Vasquez, Eagles Nest and Flat Top Wilderness Areas.
 - COUCUC09_B Roaring Fork Arapaho Creek and its tributaries. Aquatic Life Use – Macroinvertebrates – 303(d)
- <u>COUCUC10a</u> Mainstem of the Fraser River from the source to a point immediately below the Rendezvous Bridge. All tributaries to the Fraser River, including wetlands, from the source to the confluence with the Colorado River, except for those tributaries included in Segment 9.
 - COUCUC10a_B Ranch Creek and its tributaries. Aquatic Life Use – Temperature – 303(d)
 - COUCUC10a_D Vasquez Creek and its tributaries. Aquatic Life Use – Macroinvertebrates– 303(d)

Aquatic Life Use – Copper – 303(d)

• COUCUC10a_E - Mainstem of Fraser River from source to Leland Creek

Aquatic Life Use – Copper (Dissolved) – 303(d)

- 8. <u>COUCUC10c</u> Mainstem of the Fraser River from a point immediately below the Hammond Ditch to the confluence with the Colorado River.
 - COUCUC10c_A Fraser River from below the Hammond Ditch in Town of Fraser to Fraser Canyon near Tabernash.
 - Aquatic Life Use pH M&E List

Water Supply Use – Arsenic (total) – 303(d)

• COUCUC10c_B - Fraser River from Fraser Canyon near Tabernash to the Town of Granby.

Water Supply Use – Arsenic (total) – 303(d)

• COUCUC10c_C - From the Town of Granby to confluence with the Colorado River.

Recreation – E. coli – 303(d) Water Supply Use – Arsenic (total)– 303(d)

- 9. <u>COUCUC12</u> Lakes and reservoirs within Arapaho National Recreation Area, including Grand Lake, Shadow Mountain Lake and Lake Granby.
 - COUCUC12_B Shadow Mountain Reservoir
 Water Supply Use Arsenic (total) 303(d)
 - COUCUC12_C Lake Granby
 - Water Supply Use Arsenic (total) 303(d)
 - COUCUC12D Willow Creek Reservoir *new listing in 2021
 Water Supply Use Arsenic (total) 303(d)
 - COUCUC12E Grand Lake *new listing in 2021
 Aquatic Life Use Temperature 303(d)
- 10. <u>COUCUC13</u> All lakes and reservoirs tributary to the Colorado River from the boundary of Rocky Mountain National Park and Arapaho National Recreation Area to a point below the confluence of the Roaring Fork River, except for specific listings in Upper Colorado Segments 11 and 12 and the Blue and Eagle Rivers.
 - COUCUC13_D Williams Fork Reservoir
 Water Supply Use Arsenic (total) M&E List

2021 LBD Monitoring to Support 303(d) Listings

The Listing Methodology defines the criteria the WQCD uses to evaluate which waters are considered impaired under Section 303(d) List and the Monitoring and Evaluation List under Regulation #93. The water quality assessment process depends on the analysis of sufficient and reliable data. Generally, the WQCD only uses data from the previous five years for assessment. ⁴ For a 303(d) listing, there has to be a representative data set. The LBD Monitoring Committee compares the 2021 LBD Monitoring Summary (Appendix B) with the known impairments to ensure that LBD monitors the appropriate analytes. This evaluation shows there is sufficient monitoring throughout the CEA.

Learning By Doing 2021 Aquatic Resource Monitoring Plan

⁴ Colorado Department of Public Health. Water Quality Control Division. Section 303(d) Listing Methodology 2022 Listing Cycle. May 2020.

⁵ Environmental Protection Agency. Arsenic Fact Sheet 2013. <u>https://www.epa.gov/sites/production/files/2014-</u> <u>03/documents/arsenic_factsheet_cdc_2013.pdf</u>

⁶ Rocky Mountain Water – Updates to Colorado's Arsenic Regulations – Dan Delaughter, PE. Pg 12-15. https://www.apogeepublications.com/emags/RMW_March2020/

2021 CPW Fish Monitoring Plan

In cooperation with LBD monitoring efforts, CPW plans to survey fish populations at the following locations in 2021. All fish survey activities are dependent upon flow and temperature conditions, as well as staff and volunteer availability.

Fraser River

Robbers' Roost – near the headwaters of the Fraser River, upstream of Mary Jane Ski Area near the base of Berthoud Pass. Sampling will be conducted the week of August 30th.

Safeway – this site is surveyed annually and is the longest continuous data set on the Fraser River. Sampling will be conducted the week of August 30th.

Grand County Water and Sanitation #1 property – located on the public reach of the Fraser Flats River Habitat Project completed in 2017. Sampling will be conducted on October 4th.

Fraser River Ranch. Sampling will be conducted the week of August 30th.

Kaibab Park, Town of Granby. Sampling will be conducted the week of August 30th.

Colorado River

Town of Granby property behind River Run RV Park on the Colorado River. Sampling will be conducted on two sites on October 5th.

Parshall-Sunset – raft electrofishing reach. Surveyed annually, will be surveyed September 24th and 28th.

Irrigated Lands in the Vicinity of Kremmling (ILVK) – an established site downstream of the Troublesome Creek confluence will be surveyed by raft electrofishing in late April/early May.

Willow Creek

Several sites will be surveyed in late July/early August in order to assess ongoing impacts of burn-related flooding and debris flow events related to the East Troublesome wildfire last fall 2020.

2021 Riparian Areas and Wetlands Monitoring Plans

This section documents known riparian vegetation monitoring or other revegetation efforts within the CEA.

Revegetation at the Fraser Flats

The Colorado River Headwaters Chapter of Trout Unlimited, an LBD partner, plans to host a volunteer re-vegetation effort for the Fraser Flats River Habitat Project reach in May 2021. The river restoration and initial willow plantings at the project reach were completed in 2017. Since that time, LBD has been monitoring the success of the willow plantings and their condition each year, from 2018 through 2020, consistent with LBD's voluntary post-project monitoring plan for the site. Several areas were identified from past years' surveys where supplemental plantings could improve the density of the riparian corridor along the project reach. The 2021 revegetation effort will focus on filling in the vegetation gaps along the riverbanks of the project reach.

While annual surveys to assess the number and condition of the willow plantings have been performed in past years, LBD and the Headwaters Chapter will not be performing a detailed willow count survey in 2021. Surveys in future years will be performed on an as-needed basis.

Revegetation at Ranch Creek

Similar to the willow revegetation efforts performed at the Fraser Flats, LBD and the Colorado River Headwaters Chapter of Trout Unlimited, hosted an initial revegetation effort performed by volunteers on a section of Ranch Creek at Quad Ranch in 2018. In 2019, LBD performed a detailed survey of the condition of the plantings and found high success rates. A supplemental willow planting effort was performed by volunteers in the summer of 2019 to increase the density of the plantings along the riverbank. LBD and the Headwaters Chapter will not be performing a detailed willow count survey in 2021. Surveys in future years will be performed on an as-needed basis.

Northern Water's Municipal Subdistrict Riparian Vegetation Monitoring

Condition 30 of the WGFP 1041 Permit requires the Subdistrict to prepare a monitoring plan to establish baseline conditions of riparian and wetland vegetation along the Colorado River from Windy Gap Reservoir downstream to the lower terminus of the Kemp-Breeze Wildlife Area, and on Willow Creek below Willow Creek Reservoir (Grand County, 2012).

The monitoring is being conducted by ERO. The primary objectives of the Riparian Vegetation Monitoring Plan are to:

- Obtain baseline data that describes the existing conditions of riparian vegetation and communities within the study area;
- Document the conditions of riparian vegetation and communities within the study area following the WGFP Project implementation.

The data generated as part of this monitoring plan can also be used to develop more specific management objectives to determine if conditions are being maintained, improved, or are declining. Based on the baseline and future monitoring data, management actions can be designed to meet management objectives. Monitoring for this study did not occur in 2021.

References

- Colorado Department of Public Health and Environment, Water Quality Control Commission. (Aug 2017). Aquatic life use attainment: Methodology to determine use attainment for rivers and streams. Policy Statement 2010-1.
- Colorado Department of Public Health and Environment, Water Quality Control Commission. (June 2019). Regulation No. 33, Classification and Numeric Standards for Upper Colorado River Basin and North Platte River (Planning Region 12).
- Colorado Department of Public Health and Environment, Water Quality Control Commission. Reg #93. (2020). Colorado's Section 303(D) List of Impaired Waters and Monitoring and Evaluation List. Retrieved from https://www.colorado.gov/pacific/sites/default/files/93_2018%2803%29.pdf
- Colorado Department of Public Health and Environment, Water Quality Control Division. (March 2019). Section 303(d) Listing Methodology 2020 Listing Cycle.
- Colorado Department of Public Health and Environment, Water Quality Control Division, Moffat. (2016, June). Rationale for Conditional 401 Certification of the Moffat Collection System Project. Denver, CO. Retrieved from https://www.colorado.gov/pacific/sites/default/files/Moffat%20Collection%20Sys tem%20Final%20401%20Certification.pdf
- Colorado Department of Public Health and Environment, Water Quality Control Division, WGFP. (2016, March). Rationale for Conditional 401 Certification of the Windy Gap Firming Project. Denver, Colorado, USA. Retrieved from https://www.colorado.gov/pacific/sites/default/files/WQ_WindyGapFirmingProje ct_ConditionalCertification.pdf
- Colorado Water Quality Control Commission, Department of Public Health and the Environment. (2014). Guidance for Implementation of Colorado's Narrative Sediment Standard Regulation #31, Section 31.11(1)(a)(i), Policy 98-1. https://www.colorado.gov/pacific/sites/default/files/98-1SedimentGuidance2017withAppendices.pdf.
- GEI Consultants. (2019, September 12). Scope of work for sediment monitoring in the Colorado/Fraser River Drainage.
- Grand County. (2012, December 4). Resolution No. 2012PA-12-1, 1041 Permit.
- Intergovernmental Agreements fo the Learning by Doing Cooperative Effort. (2012). Section II.B.5 - Monitoring Plan.

- Learning By Doing Monitoring Committee. (2017). Learning By Doing Aquatic Resource Montioring Planning Process.
- Merritt, R. W. (2008). An Introduction to the Aquatic Insects of North America (Fourth ed.). Dubuque, Iowa: Kendall/Hunt.

Tetra Tech and HabiTech. (2018). 2017 Monitoring Report, Grand County, Colorado.

Ward, J. V. (2002). An Illustrated Guide to the Mountain Stream Insects of Colorado (Second ed.). Boulder, Colorado: University Press of Colorado.

Appendix A – Existing Monitoring Sites with River Mile and Entity Station Name

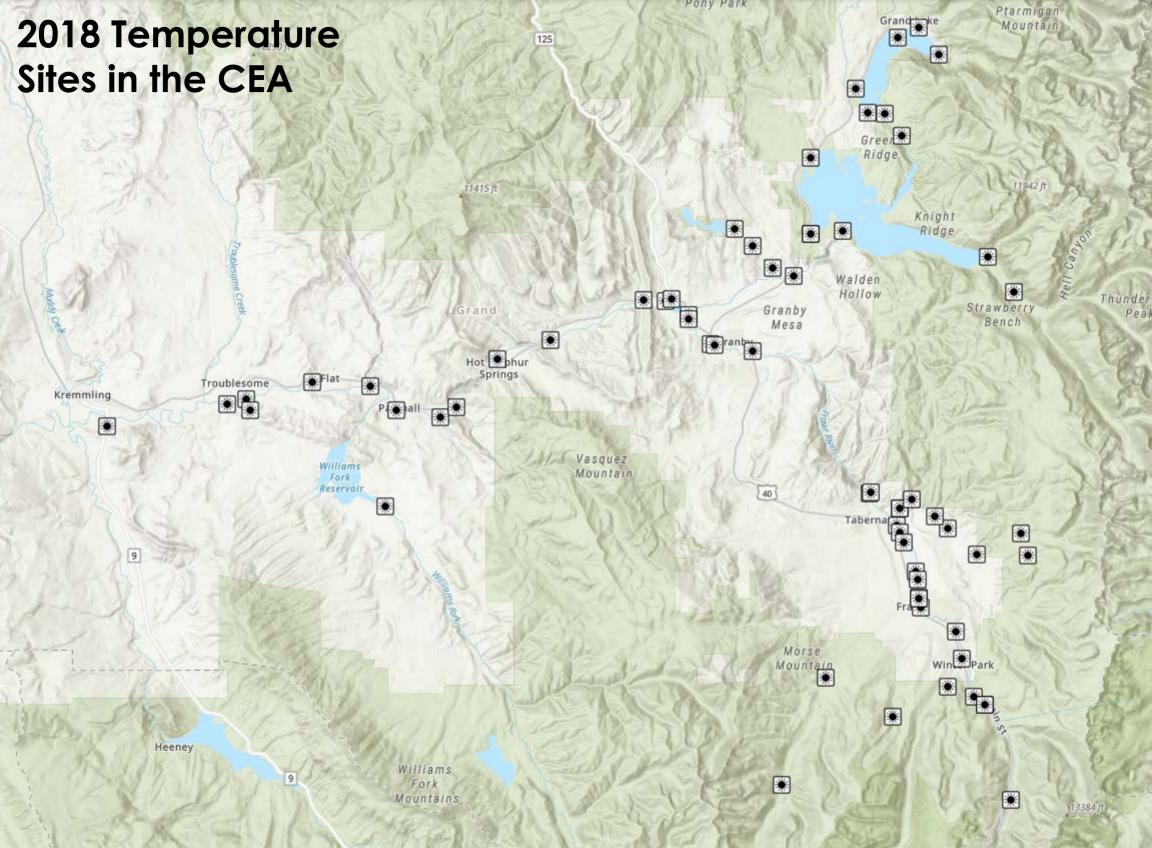
River Mile ID	Description	Entity	Туре	Latitude	Longitude
AC-0.6	Arapaho Creek at Monarch Lake upstream Granby Reservoir	Northern Water	Water Quality	40.1128	-105.75
AC-0.6	Arapaho Creek at Monarch Lake upstream Granby Reservoir	Northern Water	Temperature	40.1128	-105.75
AC-0.6	Arapaho Creek at Monarch Lake upstream Granby Reservoir	Northern Water	Flow	40.1128	-105.75
BC-0	Bobtail Creek above diversion dam downstream of gauging station	Denver Water	Water Quality	39.76026	-105.906
BC-0	Bobtail Creek above diversion dam	Denver Water	Flow	39.76026	-105.906
CB-0.6	Cabin Creek upstream North and South Channels	Denver Water	Temperature	39.97497	-105.775
CB-2.7	Cabin Creek downstream Denver Water diversion	DW/USGS	Flow	39.98582	-105.745
CB-2.7	Cabin Creek downstream Denver Water diversion	Denver Water	Temperature	39.98582	-105.745
CH-0.5	Church Creek upstream of Willow Creek at Flume	Northern Water	Water Quality	40.1356	-105.921
CR-1.7	Colorado River upstream of the Blue River	LBD/ILVK	Macro	40.0465	-106.373
CR-1.7	Colorado River upstream of the Blue River	LBD/ILVK	Sediment	40.0465	-106.373
CR-2.3	Colorado River upstream Hwy 9 Bridge at Kremmling	BLM/LBD	Temperature	40.0421	-106.371
CR-2.3	Colorado River upstream Hwy 9 Bridge at Kremmling	Denver Water	Water Quality	40.0421	-106.371
CR-7.4	Colorado River downstream of Troublesome Creek	LBD/ILVK	Macro	40.0509	-106.311
CR-7.4	Colorado River downstream of Troublesome Creek	LBD/ILVK	Sediment	40.0509	-106.311
CR-9.1	Colorado River downstream of KB Ditch	GCWIN	Temperature	40.05377	-106.289
CR-9.1	Colorado River downstream of KB Ditch	LBD	Macro	40.05377	-106.289
CR-9.1	Colorado River downstream of KB Ditch	LBD	Sediment	40.05377	-106.289
CR-9.1	Colorado River downstream of KB Ditch	Northern Water	Flow	40.05377	-106.289
CR-12.6	Colorado River at ConRitschard	GCWIN	Temperature	40.06545	-106.231
CR-13.7	Parshall-Sunset	CPW	Fish	40.06105	-106.213
CR-14.9	Colorado River downstream of Parshall near Kid Fishing Pond	GCWIN	Temperature	40.06342	-106.191
CR-14.9	Colorado River downstream of Parshall near Kid Fishing Pond	CPW	Macro	40.06291	-106.192
CR-14.9	Colorado River downstream of Parshall near Kid Fishing Pond	LBD	Sediment	40.06342	-106.191
CR-14.9	Colorado River downstream of Parshall near Kid Fishing Pond	Northern Water	Flow	40.06342	-106.191
CR-16.7	Colorado River upstream of Williams Fork	Northern Water	Temperature	40.05042	-106.173
CR-16.7	Colorado River upstream of Williams Fork	Northern Water	Macro	40.04689	-106.143
CR-16.7	Colorado River north of Parshall at Bar Lazy J Ranch bridge	Denver Water	Water Quality	40.05042	-106.173
CR-16.7	Colorado River upstream of Williams Fork	LBD	Sediment	40.05042	-106.173
CR-18.4	Colorado River at Lone Buck	GCWIN	Temperature	40.0471	-106.143
CR-19.8	Colorado River downstream of Byers Canyon	CPW	Macro	40.05199	-106.132
CR-19.8	Colorado River downstream of Byers Canyon	CPW	Fish	40.05199	-106.132
CR-19.8	Colorado River downstream of Byers Canyon	GCWIN	Temperature	40.05328	-106.132
CR-21.9	Colorado River downstream of Hot Sulphur Springs	LBD/Tetra Tech	Sediment	40.07232	-106.112
CR-22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	CPW	Macro	40.07469	-106.108

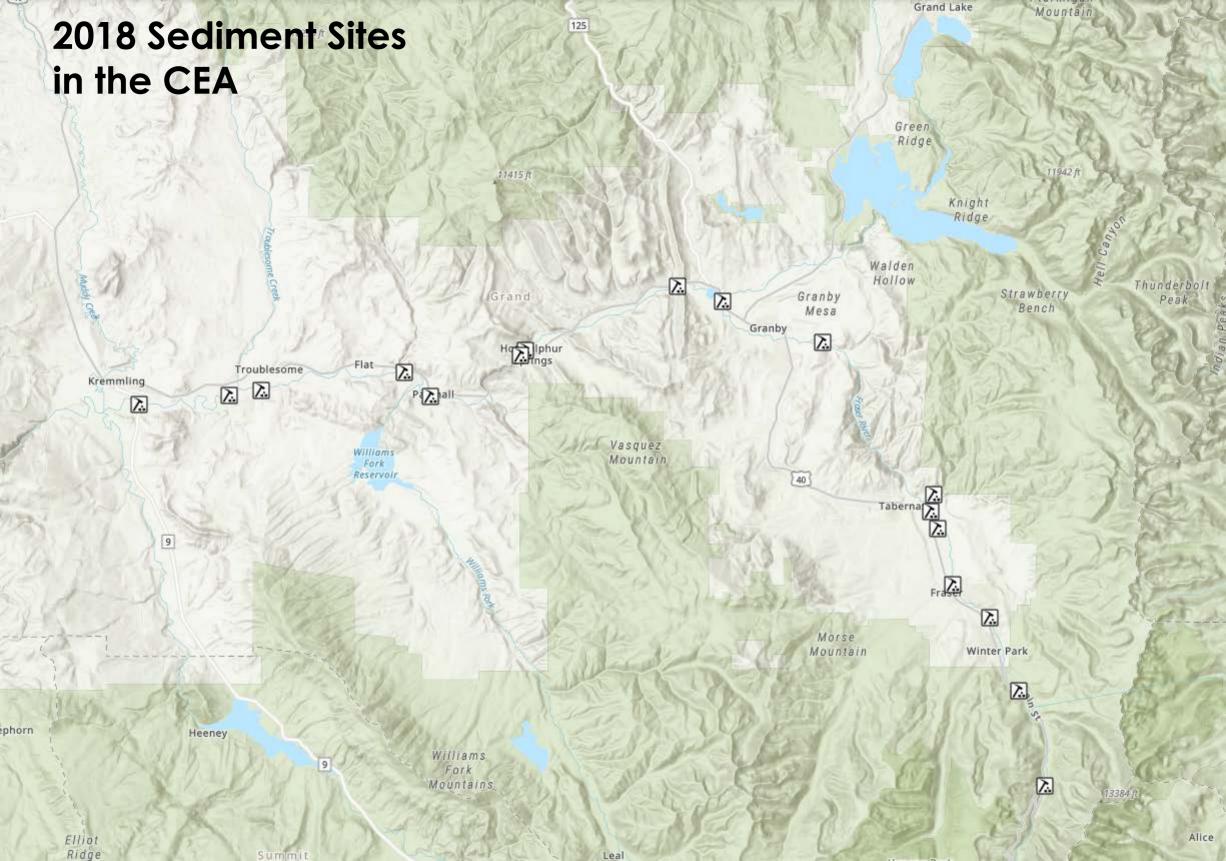
River Mile ID	Description	Entity	Туре	Latitude	Longitude
CR-22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	CPW	Fish	40.07469	-106.108
CR-22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	Northern Water	Macro	40.07394	-106.11
CR-22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	LBD	Sediment	40.07378	-106.11
CR-22.7	Colorado River upstream Hot Sulphur Springs at WTP	Northern Water	Temperature	40.07734	-106.104
CR-23.5	Colorado River upstream of Hot Sulphur Springs	Northern Water	Flow	40.08347	-106.088
CR-24.9	Colorado River at Sheriff Ranch	CPW	Macro	40.0874	-106.068
CR-24.9	Colorado River at Sheriff Ranch	GCWIN	Temperature	40.08769	-106.065
CR-27.5	Colorado River downstream Chimney Rock at Upper Red Barn	CPW	Macro	40.1026	-106.024
CR-28.7	Colorado River downstream of Windy Gap Reservoir	Northern Water	Water Quality	40.1082	-106.004
CR-28.7	Colorado River downstream of Windy Gap Reservoir	Northern Water	Temperature	40.1082	-106.004
CR-28.7	Colorado River downstream of Windy Gap Reservoir	Northern Water	Macro	40.1082	-106.004
CR-28.7	Colorado River downstream of Windy Gap Reservoir	NW/USGS	Flow	40.1082	-106.004
CR-28.7	Colorado River downstream of Windy Gap Reservoir	LBD	Sediment	40.1082	-106.004
CR-28.7	Colorado River downstream of Windy Gap Reservoir	CPW	Macro	40.10895	-106.001
CR-28.7	Colorado River downstream of Windy Gap Reservoir	CPW	Fish	40.10895	-106.001
CR-29.8	Colorado River at confluence of Windy Gap spillway and bypass	Northern Water	Temperature	40.1078	-105.988
CR-30	Colorado River at Windy Gap Bypass	Northern Water	Flow	40.1087	-105.984
CR-30	Colorado River at Windy Gap Bypass	Northern Water	Temperature	40.1087	-105.984
CR-30.8	Colorado River downstream of Fraser, upstream of Windy Gap	CPW	Macro	40.10201	-105.975
CR-30.8	Colorado River downstream of Fraser, upstream of Windy Gap	CPW	Fish	40.10131	-105.975
CR-31	Colorado River upstream of Windy Gap and Fraser River confluence	Northern Water	Temperature	40.1003	-105.973
CR-31	Colorado River upstream of Windy Gap and Fraser River confluence	Northern Water	Water Quality	40.1003	-105.973
CR-31	Colorado River upstream of Windy Gap and Fraser River confluence	Northern Water	Macro	40.1003	-105.973
CR-31	Colorado River upstream of Windy Gap and Fraser River confluence	CPW	Macro	40.10131	-105.975
CR-31	Colorado River upstream of Windy Gap and Fraser River confluence	LBD	Sediment	40.1003	-105.973
CR-32.1	Colorado River downstream of Willow Creek	Northern Water	Water Quality	40.107	-105.956
CR-34.7	Colorado River upstream of Willow Creek	Northern Water	Water Quality	40.1196	-105.914
CR-35.6	Colorado River downstream Granby Reservoir at flow gage	Northern Water	Temperature	40.1211	-105.901
CR-35.6	Colorado River downstream of Granby Reservoir	USGS	Flow	40.1211	-105.901
CR-38.3	Colorado River downstream of Granby Reservoir	Northern Water	Water Quality	40.1444	-105.867
CR-38.3	Colorado River downstream of Granby Reservoir	Northern Water	Temperature	40.1444	-105.867
CR-38.3	Colorado River downstream of Granby Reservoir	Northern Water	Macro	40.1444	-105.867
CR-43.5	Colorado River upstream of Granby Reservoir	Northern Water	Temperature	40.1945	-105.827
CR-44.6	Colorado River downstream of Shadow Mountain Reservoir	Northern Water	Water Quality	40.2059	-105.838
CR-44.6	Colorado River downstream of Shadow Mountain Reservoir	Northern Water	Temperature	40.2059	-105.838
CR-44.6	Colorado River downstream of Shadow Mountain Reservoir	Northern Water	Macro	40.2059	-105.838
CR-44.6	Colorado River downstream of Shadow Mountain Reservoir	USGS	Flow	40.2059	-105.838

River Mile ID	Description	Entity	Туре	Latitude	Longitude
CC-1.5	Crooked Cr Abv Pole Creek at Tabernash	EGWQB	Water Quality	39.99083	-105.849
EI-0.1	East Inlet upstream of Grand Lake	Northern Water	Water Quality	40.2369	-105.801
EI-0.1	East Inlet upstream of Grand Lake	Northern Water	Temperature	40.2369	-105.801
EI-0.1	East Inlet upstream of Grand Lake	Northern Water	Flow	40.2369	-105.801
EI-0.1	East Inlet upstream of Grand Lake	Northern Water	Macro	40.2369	-105.801
EC-5.5	Elk Creek near Fraser	DW/USGS	Flow	39.88943	-105.833
EC-5.5	Elk Creek downstream Denver Water diversion	Denver Water	Temperature	39.88943	-105.833
FR-0.1	Fraser River upstream of confluence with Colorado River	Northern Water	Water Quality	40.0984	-105.973
FR-0.1	Fraser River upstream of confluence with Colorado River	Northern Water	Temperature	40.0984	-105.973
FR-0.1	Fraser River upstream of confluence with Colorado River	Northern Water	Macro	40.0984	-105.973
FR-0.1	Fraser River upstream of confluence with Colorado River	Northern Water	Flow	40.0984	-105.973
FR-1.6	Fraser River downstream of Granby Sanitation District	GCWIN	Temperature	40.08551	-105.958
FR-1.9	Fraser River upstream of Granby Sanitation District	GCWIN	Temperature	40.08453	-105.955
FR-1.9	Fraser River upstream of Granby Sanitation District	LBD	Macro	40.08453	-105.955
FR-1.9	Fraser River upstream of Granby Sanitation District	LBD	Sediment	40.08453	-105.955
FR-3.5	Fraser River At Hwy. 40 At Granby, Co	EGWQB	Water Quality	40.08139	-105.928
FR-3.5	Fraser River blw Highway 40 in Granby	GCWIN/LBD	Temperature	40.08139	-105.928
FR-4.5	Fraser River downstream Fraser Canyon	GCWIN	Temperature	40.00775	-105.848
FR-5.5	Fraser River at Granby Ranch downstream of golf course	LBD	Sediment	40.07882	-105.904
FR-12.4	Fraser River downstream of Crooked Creek and Tabernash	EGWQB/CRWCD	Water Quality	40.00689	-105.848
FR-12.4	Fraser River downstream of Crooked Creek and Tabernash	GCWIN	Temperature	40.00689	-105.848
FR-12.4	Fraser River downstream of Crooked Creek and Tabernash	EGWQB/CRWCD	Flow	40.00689	-105.848
FR-12.4	Fraser River downstream of Crooked Creek and Tabernash	LBD	Macro	40.00689	-105.848
FR-12.4	Fraser River downstream of Crooked Creek and Tabernash	LBD	Sediment	40.00689	-105.848
FR-14	Fraser River upstream of Tabernash	EGWQB	Water Quality	39.99033	-105.83
FR-14	Fraser River upstream of Tabernash	EGWQB/TU	Temperature	39.99033	-105.83
FR-14	Fraser River upstream of Tabernash	Denver Water	Macro	39.99033	-105.83
FR-14	Fraser River upstream of Tabernash	EGWQB/USGS	Flow	39.99033	-105.83
FR-14	Fraser River upstream of Tabernash	LBD	Sediment	39.99033	-105.83
FR-14.4	Winter Park W & S	CPW	Fish	39.98647	-105.828
FR-14.4	Fraser River LBD Restoration Project, Downstream end	GCWIN/LBD	Temperature	39.98647	-105.828
FR-15	Fraser River LBD Restoration Project, Upstream end	LBD	Macro	39.98134	-105.825
FR-15	Fraser River LBD Restoration Project, Upstream end	GCWIN/LBD	Temperature	39.98134	-105.825
FR-15	Fraser River LBD Restoration Project, Upstream end	LBD	Sediment	39.98134	-105.825
FR-16.6	Fraser River downstream Fraser Sanitation	GCWIN	Temperature	39.966	-105.817
FR-16.9	Fraser River upstream Fraser Sanitation	GCWIN	Temperature	39.96195	-105.815
FR-17.7	Fraser River downstream County Rd 8 at Hammond Ditch	GCWIN	Temperature	39.95216	-105.814
FR-18.1	Fraser River downstream County Rd 804	GCWIN	Temperature	39.94689	-105.813
FR-18.1	Safeway	CPW	Fish	39.94689	-105.813
FR-20	Fraser River at Rendezvous Bridge	GCWIN	Temperature	39.93412	-105.79

River Mile ID	Description	Entity	Туре	Latitude	Longitude
FR-20	Fraser River at Rendezvous Bridge	Denver Water	Macro	39.93412	-105.79
FR-20	Fraser River at Rendezvous Bridge	LBD	Sediment	39.93412	-105.79
FR-20.6	Fraser River downstream Vasquez Creek at Winter Park Co.	EGWQB	Water Quality	39.92778	-105.786
FR-21	Confluence Park	CPW	Fish	39.92294	-105.782
FR-22.5	Fraser River downstream Winter Park Resort at Idlewild GCWIN Temperature		39.89999	-105.777	
FR-22.5	Idlewild Campground	CPW	Fish	39.89999	-105.777
FR-22.5	Fraser River at Winter Park	DW/USGS	Flow	39.89999	-105.777
FR-23.2	Fraser River downstream Winter Park Sanitation	GCWIN	Temperature	39.89596	-105.769
FR-23.4	Fraser River upstream Winter Park Sanitation District	LBD	Sediment	39.89596	-105.769
FR-23.4	Fraser River upstream Winter Park Sanitation District	EGWQB	Water Quality	39.89596	-105.769
FR-23.4	Fraser River upstream Winter Park Sanitation District	GCWIN	Temperature	39.89596	-105.769
FR-23.4	Fraser River upstream Winter Park Sanitation District	Denver Water	Macro	39.89596	-105.769
FR-TBD	Fraser River downstream of UP Railroad discharge	LBD	Macro	TBD	TBD
FR-24	Fraser River upstream Moffat Tunnel Nr Winter Park, Co	EGWQB	Water Quality	39.88656	-105.762
FR-24	Fraser/Jim Canal at Gaging Station	Denver Water	Water Quality	39.88656	-105.762
FR-25.1	Fraser River upstream of UP Railroad discharge	LBD	Macro	39.8775	-105.754
FR-27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	EGWQB	Water Quality	39.84583	-105.751
FR-27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	GCWIN	Temperature	39.84583	-105.751
FR-27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	EGWQB/USGS	Flow	39.84583	-105.751
FR-27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	LBD	Macro	39.84583	105.7518
FR-27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	LBD	Sediment	39.84583	-105.751
GRP-0	Granby Pump Canal above Shadow Mountain Reservoir	Northern Water	Water Quality	40.2068	-105.85
GRP-0	Granby Pump Canal above Shadow Mountain Reservoir	Northern Water	Temperature	40.2068	-105.85
GL-ATW	Grand Lake West Portal	Northern Water	Water Quality	40.2411	-105.805
GL-MID	Grand Lake Mid-Section	Northern Water	Water Quality	40.2433	-105.813
GL-WES	Grand Lake west end of lake, south of Shadow Mountain Channel	Northern Water	Water Quality	40.2419	-105.822
SM-CHL	Shadow Mountain Reservoir Channel in Grand Lake at mouth of Channel	Northern Water	Water Quality	40.24611	-105.829
SM-CHL	Shadow Mountain Channel at Chipmunk Lane	GC/USGS	Temperature	40.24611	-105.829
SM-CHL	Shadow Mountain Channel at Chipmunk Lane	GC/USGS	Water Quality	40.24611	-105.829
SM-CHL	Shadow Mountain Channel at Chipmunk Lane	GC/USGS	Flow	40.24611	-105.829
HC-0.5	Herd Creek on County Road 843	Denver Water	Temperature	39.9947	-105.804
GR-DAM	Granby Reservoir Dam	Northern Water	Water Quality	40.1497	-105.865
GR-EAS	Granby Reservoir East Side	Northern Water	Water Quality	40.135	-105.796
GR-WES	Granby Reservoir West Side	Northern Water	Water Quality	40.175	-105.87
LCB-2.2	Little Cabin Creek downstream Denver Water diversion	Denver Water	Temperature	39.9743	-105.74
LVC-0.2	Little Vasquez upstream Winter Park on Arapaho Road	Denver Water	Temperature	39.90549	-105.795
MQC-0	McQueary Creek above diversion dam 1 3/4 miles north of dorm	Denver Water	Water Quality	39.78227	-105.916
MC-0.5	Meadow Creek on County Road 84/USFS 129	Denver Water	Temperature	40.0039	-105.819

River Mile ID	Description	Entity	Туре	Latitude	Longitude
NF-0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern Water	Water Quality	40.219	-105.858
NF-0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern Water	Temperature	40.219	-105.858
NF-0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir Flow		40.219	-105.858	
NF-0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern Water	Macro	40.219	-105.858
NI-0.1	North Inlet upstream of Grand Lake	Northern Water	Water Quality	40.2511	-105.815
NI-0.1	North Inlet upstream of Grand Lake	Northern Water	Temperature	40.2511	-105.815
NI-0.1	North Inlet upstream of Grand Lake	Northern Water	Flow	40.2511	-105.815
RCC-0	Ranch Canal at Gaging Station	Denver Water	Water Quality	39.88987	-105.752
RC-1.1	Ranch Creek downstream Meadow Creek	EGWQB/CRWCD	Water Quality	39.99901	-105.828
RC-1.1	Ranch Creek downstream Meadow Creek	GC/DW	Temperature	39.99901	-105.828
RC-1.1	Ranch Creek downstream Meadow Creek	GCWIN	Temperature	39.99901	-105.828
RC-1.1	Ranch Creek downstream Meadow Creek	EGWQB/CRWCD	Flow	39.99901	-105.828
RC-1.1	Ranch Creek downstream Meadow Creek	LBD	Macro	39.99912	-105.827
RC-1.1	Ranch Creek downstream Meadow Creek	LBD	Sediment	39.99901	-105.828
RC-4.7	Ranch Creek downstream County Rd 8315	GCWIN	Temperature	39.98859	-105.795
RC-5.1	Ranch Creek downstream of willow planting project	LBD	Temperature	39.9842	-105.795
RC-5.8	Ranch Creek upstream of willow planting project	LBD	Temperature	39.97821	-105.792
RC-9	Ranch Creek Near Fraser, Co.	EGWQB	Water Quality	39.94999	-105.766
RC-9	Ranch Creek Near Fraser, Co.	EGWQB/USGS	Flow	39.94999	-105.766
RDC-0	Reeder Creek, upper	BLM	Temperature	40.05663	-106.276
RDC-0.7	Reeder Crk above footbridge, blw irrigation ditch	BLM	Temperature	40.05044	-106.273
RF-0	Roaring Fork upstream Granby Reservoir	Northern Water	Water Quality	40.1308	-105.767
RF-0	Roaring Fork upstream Granby Reservoir	Northern Water	Temperature	40.1308	-105.767
SM-DAM	Shadow Mountain Reservoir Dam	Northern Water	Water Quality	40.2101	-105.842
SM-MID	Shadow Mountain Reservoir Mid-Section	Northern Water	Water Quality	40.2252	-105.837
SM- NOR2	Shadow Mountain Reservoir North	Northern Water	Water Quality	40.24458	-105.839
SM-NW1	Shadow Mountain Reservoir northwest of the center of the Reservoir	Northern Water	Water Quality	40.237	-105.842
SWF-0	South fork at South Fork Campground at gauging station	Denver Water	Water Quality	39.79582	-106.031
SWF-0	South Fork at South Fork Campground	DW/USGS	Flow	39.79582	-106.031
STC-0	St. Louis Creek upstream confluence with Fraser River	GCWIN/LBD	Temperature	39.95175	-105.815
STC-5.4	St. Louis Creek near Fraser	DW/USGS	Flow	39.90999	-105.878
STC-5.4	St. Louis Creek at Fraser Experimental Forest HQ	LBD	Temperature	39.90999	-105.878
STC-9.8	St. Louis Creek downstream Denver Water Board diversion	Denver Water	Temperature	39.85385	-105.909
STC-0	St. Louis Creek upstream confluence with Fraser River	LBD	Macro	39.95175	-105.815
STC-0	St. Louis Creek upstream confluence with Fraser River	LBD	Sediment	39.95175	-105.815
SC-0	Steelman Creek at bridge above diversion dam south of dorm	Denver Water	Water Quality	39.7571	-105.933
ST-0	Shadow Mountain Channel at Chipmunk Lane	Northern Water	Water Quality	40.1829	-105.889


River Mile ID	Description	Entity	Туре	Latitude	Longitude
ST-0	Stillwater Creek upstream Granby Reservoir	Northern Water	Temperature	40.1829	-105.889
USF-0	Upper South Fork of the Williams Fork (3.5 miles above trail head)	Denver Water	Water Quality	39.70286	-105.978
VCC-0	Vasquez Canal at Vasquez #1 Gaging Station	Denver Water	Water Quality	39.88957	-105.769
VT-0	Vasquez Tunnel outlet	Denver Water	Water Quality	39.8185	-105.835
VC-0	Vasquez Creek at the town of Winter Park	DW/USGS	Flow	39.92026	-105.785
VC-0	Vasquez Creek at the town of Winter Park	Denver Water	Macro	39.92026	-105.785
VC-0	Vasquez Creek at the town of Winter Park	GCWIN	Temperature	39.92026	-105.785
VC-4.3	Vasquez Ck. upstream Vasquez Tunnel	Denver Water	Water Quality	39.8186	-105.836
VC-8	Vasquez Ck. at diversion structure	Denver Water	Water Quality	39.86379	-105.821
WF-0.5	Williams Fork downstream WF Reservoir at Kemp Breeze	LBD/Denver Water	Macro	40.0561	-106.183
WF-2	Williams Fork downstream Williams Fork Reservoir	Denver Water	Water Quality	40.03593	-106.205
WF-2	Williams Fork downstream Williams Fork Reservoir	DW/USGS	Flow	40.03593	-106.205
WF-2	Williams Fork downstream Williams Fork Reservoir	LBD/Denver Water	Macro	40.04308	-106.198
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	Denver Water	Water Quality	40.0002	-106.18
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	DW/USGS	Flow	40.0002	-106.18
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	LBD/Denver Water	Macro	39.99229	-106.171
WF-5.5	Williams Fork upstream of Williams Fork Reservoir	LBD	Temperature	40.0002	-106.18
WF-13.1	Williams Fork downstream of Henderson Mill	BLM	Water Quality	39.9092	-106.103
WF-13.1	Williams Fork downstream of Henderson Mill	BLM	Macro	39.9092	-106.103
WF-13.1	Williams Fork downstream of Henderson Mill	BLM	Habitat	39.9092	-106.103
WF-13.1	Williams Fork downstream of Henderson Mill	LBD	Macro	39.9092	-106.103
WF-19	Williams Fork below Kinney Creek confluence at Leal gauge	Denver Water	Water Quality	39.83388	-106.056
WF-19	Williams Fork Near Leal, CO	DW/USGS	Flow	39.83388	-106.056
WF-19.6	Williams Fork upstream Darling Creek near Leal, CO	DW/USGS	Flow	39.79719	-106.026
WF-22.6	Williams Fork above bridge at Sugarloaf Campground	Denver Water	Water Quality	39.78862	-106.022
WF-28.2	Williams Fork downstream Steelman Creek, CO	DW/USGS	Flow	39.77888	-105.928
CLU-0	Surface drainage channel on C Lazy U pasture that drains to Willow Creek	Northern Water	Water Quality	40.1589	-105.986
WC-0.5	Willow Creek upstream of confluence with Colorado River	LBD	Temperature	40.12501	-105.915
CLU-0.7	Upstream end of surface water drainage channel on C Lazy U pasture	Northern Water	Water Quality	40.1677	-105.99
WC-0.9	Willow Creek upstream of confluence with Colorado River	Northern Water	Water Quality	40.1297	-105.918
WC-2.3	Willow Creek upstream of Bunte Highline Ditch	LBD	Temperature	40.13704	-105.929
WC-3.8	Willow Creek directly downstream of Willow Creek Reservoir Dam	Northern Water	Water Quality	40.1457	-105.941
WC-3.8	Willow Creek downstream of Willow Creek Reservoir	Northern Water	Flow	40.1457	-105.941
WC-3.8	Willow Creek downstream of Willow Creek Reservoir	Northern Water	Temperature	40.1457	-105.941
WC-6.3	Willow Creek at USGS Gage upstream C-Lazy-U Ranch	Northern Water	Water Quality	40.1558	-105.981
WC-6.3	Willow Creek at USGS Gage upstream C-Lazy-U Ranch	Northern Water	Flow	40.1558	-105.981


River Mile ID	Description	Entity	Туре	Latitude	Longitude
WCP-0	Willow Creek discharge chute to Lake Granby	Northern Water	Water Quality	40.143	-105.889
WCP-0	Willow Creek Pump Canal Inflow to Lake Granby	Northern Water Temperature		40.143	-105.889
WC- DAM	Willow Creek Reservoir at Dam	Northern Water	Water Quality	40.1497	-105.944
WGP-0	Windy Gap discharge chute to Granby Reservoir	Northern Water	Water Quality	40.1429	-105.889
WGP-0	Windy Gap Pump Inflow to Granby Reservoir	Northern Water	Temperature	40.1429	-105.889
WG- DAM	Windy Gap Reservoir at Dam	Northern Water	Water Quality	40.1085	-105.983

Appendix B – Monitoring Summary

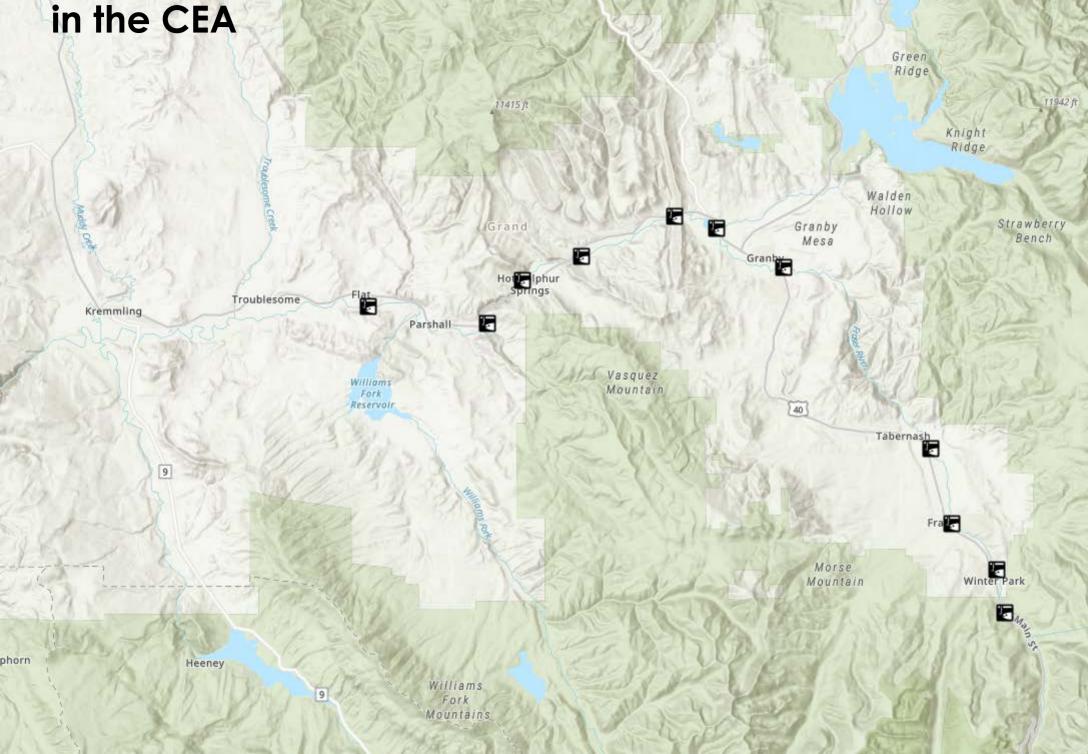
Elliot

125 2018 Macroinvertebrate Sites in the CEA

13384 /1

*

*

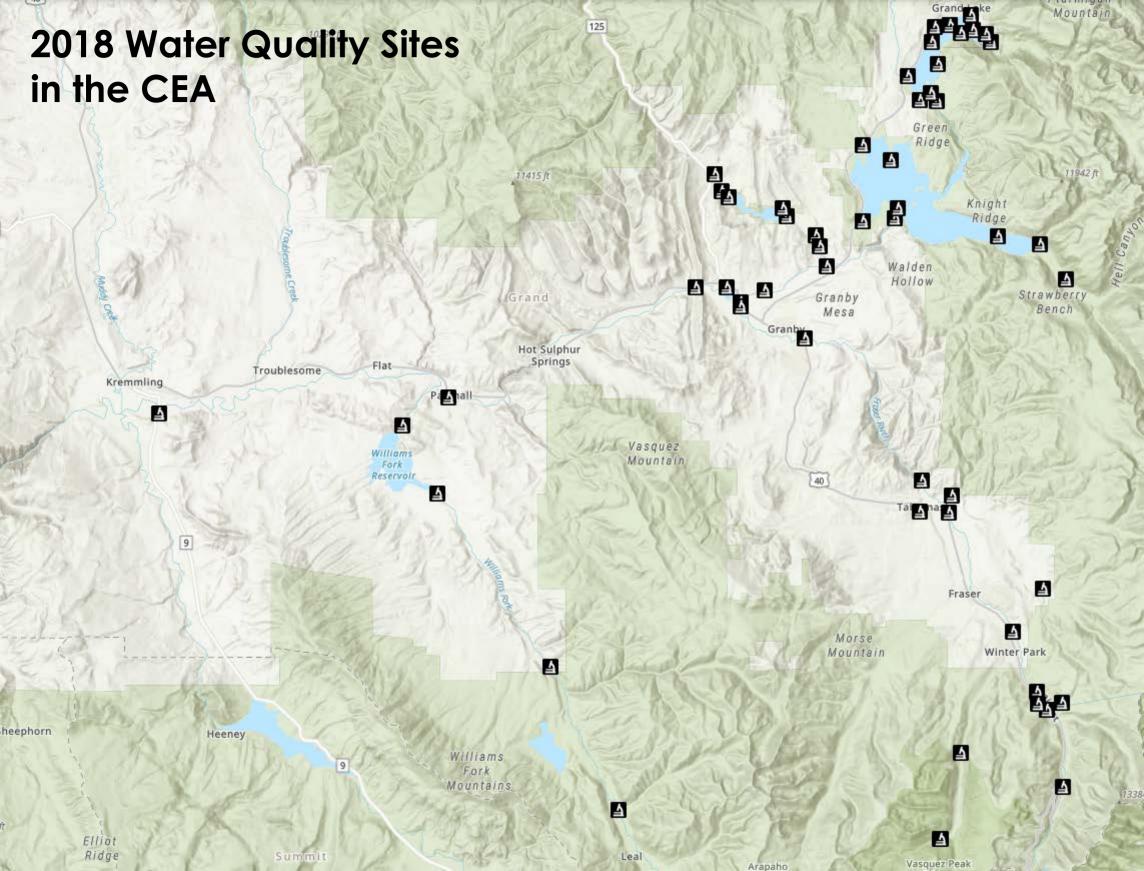

*

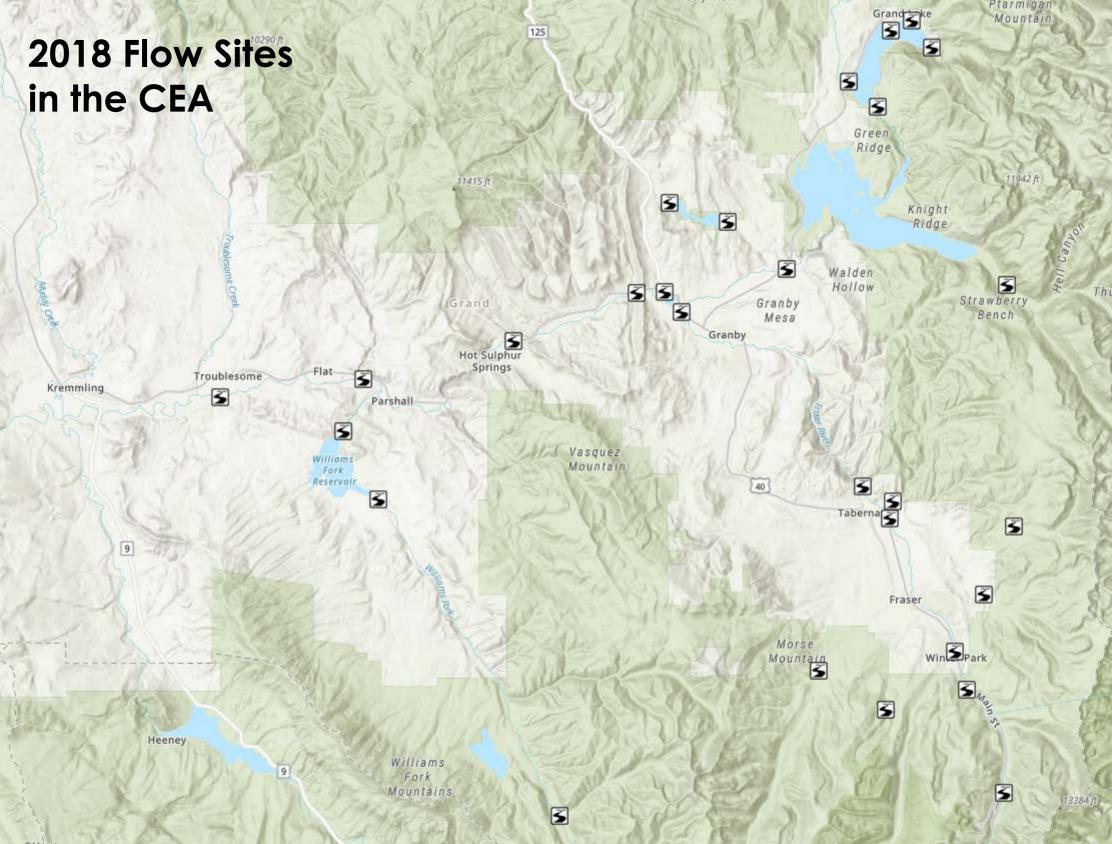
Mountan

Mee Ric

Wild

2018 Fish Survey Sites in the CEA




125

Curningun

Mountain

Grand Lake

Elliot

rn

Colorado River - Blue River to Williams Fork

River Mile						
ID	Entity Station ID	River Mile	Description	Entity	Туре	Location
CR-1.7	CR-BRU	1.7	Colorado River upstream of the Blue River	LBD	Sediment	Colorado River
CR-1.7	CR-BRU	1.7	Colorado River upstream of the Blue River	LBD/ILVK	Macroinvertebrate	Colorado River
CR-2.3	COR-Hwy9	2.3	Colorado River upstream Hwy 9 Bridge at Kremmling	BLM	Temperature	Colorado River
CR-2.3	WS-CO-004	2.3	Colorado River upstream Hwy 9 Bridge at Kremmling	Denver Water	Water Quality	Colorado River
CR-7.4	CR-TCD	7.4	Colorado River downstream of Troublesome Creek	LBD	Sediment	Colorado River
CR-7.4	CR-TCD	7.4	Colorado River downstream of Troublesome Creek	LBD/ILVK	Macroinvertebrate	Colorado River
CR-9.1	COR-KBDitch	9.1	Colorado River downstream of KB Ditch	GCWIN	Temperature	Colorado River
CR-9.1	COR-KBDitch	9.1	Colorado River downstream of KB Ditch	LBD	Macroinvertebrate	Colorado River
CR-9.1	CR Blw KB Ditch	9.1	Colorado River downstream of KB Ditch	LBD	Sediment	Colorado River
CR-9.1	CR-KBD	9.1	Colorado River downstream of KB Ditch	Northern	Flow	Colorado River
CR-12.6	COR-ConRitschard	12.6	Colorado River at ConRitschard	GCWIN	Temperature	Colorado River
CR-13.7	Parshall-Sunset	13.7	Parshall-Sunset	CPW	Fish	Colorado River
CR-14.9	COR-KidPond	14.9	Colorado River downstream of Parshall near Kid Fishing Pond	GCWIN	Temperature	Colorado River
CR-14.9	CR7	14.9	Colorado River downstream of Parshall near Kid Fishing Pond	CPW	Macroinvertebrate	Colorado River
CR-14.9	CR Blw WF	14.9	Colorado River downstream of Parshall near Kid Fishing Pond	LBD	Sediment	Colorado River
CR-14.9	CR-PAR	14.9	Colorado River downstream of Parshall near Kid Fishing Pond	Northern	Flow	Colorado River
RDC-0	REE-Upper	0	Reeder Creek, upper	BLM	Temperature	Reeder Creek
RDC-0.7	REE-Lower	0.7	Reeder Crk above footbridge, blw irrigation ditch	BLM	Temperature	Reeder Creek

Colorado River - Blue River to Williams Fork

Genera	General Field Parameters		AQ1	AQ2	SED1	SED2
	Temperature	Х				
	Dissolved Oxygen	Х				
	Specific Conductance	Х				
	рН	Х				
	Turbidity	Х				
	Flow	х				

Major lons (plus carbon and misc)

Calcium			
Magnesium			
Potassium			
Sodium			
Chloride			
Sulfate			
Total Organic Carbon			
Total Alkalinity	Х		
Total Suspended Solids	Х		
Total Dissolved Solids			
Ecoli			

Metals

ICPMS Total/Dis Suite*	х		
Iron, total			
Aluminum, total			
Arsenic, total			
Chromium, total			
Manganese, total			
Aluminum, dis			
Copper, dis			
Iron, dis			
Manganese, dis			
Arsenic, dis			
Boron, dis			
Cadmium, dis			
Chromium, dis			
Lead, dis			
Nickel, dis			
Selenium, dis			
Silver, dis			
Uranium, dis			
Zinc, dis			

Nutrients

TKN			
NH3 as N			
NO3			
NO3+NO2			
Ortho P			
P Total	Х		
chlorophyll a			

Aquatic Habitat

Macroinvertabrates	Х			
Fish		Х		
Spawning Bar Assessment			х	
Core Sample			х	
Pebble Count			Х	Х
Embeddedness			Х	Х

*ICPMS Total/Dis Suite - Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Tl, Pb, U

DW - Denver Water AQ- Aquatic Life (bugs/fish)

SED - Sediment Monitoring

Colorado River - Blue River to Williams Fork

		Jar	۱		Feb		Μ	ar			Apr		Ν	Лау			Ju	n			Ju	ıl		Α	ug			Se	р			00	t			1	Nov		I	Dec	:	
Station	Jan 01		Jan 22		Feb 12 Feb 19	Mar 05	Mar 12	Mar 19 Mar 26		Apr 09	Apr 16	Apr 30	May 14	2	May 28	Jun 04	_	S		Jul 02		- (Jul 30	Aug 13	Aug 20	Aug 27	Sep 03	Sep 10	Sep 17	Sep 24	Oct 01	ť		001 22	5 2	Nov 12	5 8	Dec 03	Dec 10	Dec 17	ec.	Dec 31
CR-1.7																											A	Q1, 9	ED2													
CR-2.3	DW1								DW:	1									D	W1											DW1											
CR-7.4																											A	Q1, 9	ED2													
CR-9.1																											A	AQ1, S	ED1													1
CR-12.6																																										1
CR-13.7																												AQ	2													
CR-14.9																											A	Q1,S	MP2													
RDC-0																																										
RDC-0.7																																										

River Name	Site Abbrevation
Colorado River	CR
Reeder Creek	RDC

Approximate months when temperature data are collected

Sites where there are flow gages

Colorado River -Williams Fork to Windy Gap

River Mile		River				
ID	Entity Station ID	Mile	Description	Entity	Туре	Location
CR-16.7	CR-WFU	16.7	Colorado River upstream of Williams Fork	Northern	Temperature	Colorado River
CR-16.7	CR-WFU	16.7	Colorado River upstream of Williams Fork	Northern	Macroinvertebrate	Colorado River
CR-16.7	WS-CO-003	16.7	Colorado River north of Parshall at Bar Lazy J Ranch bridge	Denver Water	Water Quality	Colorado River
CR-16.7	CR-WFU	16.7	Colorado River upstream of Williams Fork	LBD	Sediment	Colorado River
CR-18.4	COR-LoneBuck	18.4	Colorado River at Lone Buck	GCWIN	Temperature	Colorado River
CR-19.8	CR6	19.8	Colorado River downstream of Byers Canyon	CPW	Macroinvertebrate	Colorado River
CR-19.8	CR6	19.8	Colorado River downstream of Byers Canyon	CPW	Fish	Colorado River
CR-19.8	COR-blwByers	19.8	Colorado River downstream of Byers Canyon	GCWIN	Temperature	Colorado River
CR-21.9	CR at Ppark	21.9	Colorado River downstream of Hot Sulphur Springs.	LBD	Sediment	Colorado River
CR-22.1	CR5	22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	CPW	Macroinvertebrate	Colorado River
CR-22.1	CR5	22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	CPW	Fish	Colorado River
CR-22.1	CR-HSPP	22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	Northern	Macroinvertebrate	Colorado River
CR-22.1	CR-HSPP	22.1	Colorado River at Pioneer Park by Hot Sulphur Springs	LBD	Sediment	Colorado River
CR-22.7	CR-HSU	22.7	Colorado River upstream Hot Sulphur Springs at WTP	Northern	Temperature	Colorado River
CR-23.5	CR-HSU	23.5	Colorado River upstream of Hot Sulphur Springs	Northern	Flow	Colorado River
CR-24.9	CR4	24.9	Colorado River at Sheriff Ranch	CPW	Macroinvertebrate	Colorado River
CR-24.9	COR-SHRF	24.9	Colorado River at Sheriff Ranch	GCWIN	Temperature	Colorado River
CR-27.5	CR3	27.5	Colorado River downstream Chimney Rock at Upper Red Barn	CPW	Macroinvertebrate	Colorado River
CR-28.7	CR-WGD	28.7	Colorado River downstream of Windy Gap Reservoir	Northern	Water Quality	Colorado River
CR-28.7	CR-WGD	28.7	Colorado River downstream of Windy Gap Reservoir	Northern	Temperature	Colorado River
CR-28.7	CR-WGD	28.7	Colorado River downstream of Windy Gap Reservoir	Northern	Macroinvertebrate	Colorado River
CR-28.7	09034250	28.7	Colorado River downstream of Windy Gap Reservoir	NW/USGS	Flow	Colorado River
CR-28.7	CR-WGD	28.7	Colorado River downstream of Windy Gap Reservoir	LBD	Sediment	Colorado River
CR-28.7	CR2	28.7	Colorado River downstream of Windy Gap Reservoir	CPW	Macroinvertebrate	Colorado River
CR-28.7	CR2	28.7	Colorado River downstream of Windy Gap Reservoir	CPW	Fish	Colorado River
CR-29.8	CR-WGC	29.8	Colorado River at confluence of Windy Gap spillway and bypass	Northern	Temperature	Colorado River
CR-30	CR-WGB	30	Colorado River at Windy Gap Bypass	Northern	Flow	Colorado River
CR-30	CR-WGB	30	Colorado River at Windy Gap Bypass	Northern	Temperature	Colorado River
WG-DAM	WG-DAM		Windy Gap Reservoir at Dam	Northern	Water Quality	Windy Gap Reservo

Colorado River - Williams Fork to Windy Gap

		Rivers	and St	reams				Wind Rese	
eral Field Parameters	NW1	NW2	DW1	AQ1	AQ2	SED1	SED2	NW8	NW
Temperature	X	X	X					X	Х
Dissolved Oxygen	X	X	X					X	X
Specific Conductance	X	X	X					X	X
pH	X	X	X					X	X
Turbidity	X	X	X					X	X
Flow	X	X	X						
or lons (plus carbon and misc)		~	~						
Calcium	Х							Х	
Magnesium	X							X	
Potassium	X							X	
Sodium	X							X	
Chloride	X							X	
Sulfate	X							X	
Total Organic Carbon	X	х						X	X
Total Alkalinity	X	~	х					X	
Total Suspended Solids	X	х	X					X	×
Total Dissolved Solids		~	X						
als									
ICPMS Total/Dis Suite*	Х		Х					Х	
Iron, total	X		~					~	
Aluminum, total	~								
Arsenic, total	х							х	
Chromium, total	X							x	
Manganese, total	^							^	
Aluminum, Dis									
Copper, dis	х							х	>
Iron, dis	X							x	
Manganese, dis	X							x	>
Arsenic, dis	X							x	
Boron, dis	X							x	
Cadmium, dis	X							x	
	X	-						x	
Chromium, dis Lead, dis	X	-						x	
	X	-							
Nickel, dis		-						X	
Selenium, dis	X	-						X	
Silver, dis	X							X	
Uranium, dis	X X							X X	
Zinc, dis	~							~	
rients TKN	V	v						V	>
NH3 as N	X	X						X	
	X	X						X	
NO3+NO2	X	X						X	
Ortho P	X	X	V					X	
P Total	Х	Х	Х					X	>
chlorophyll a								Х	
atic Habitat				V					
Macroinvertabrates				Х	N/				
Fish					Х				
Spawning Bar Assessment						X			
Core Sample						X X	x		
Pebble Count									

*ICPMS Total/Dis Suite - Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Tl, Pb, U

NW - Northern Water

DW - Denver Water

AQ - Aquatic Life (bugs/fish)

SED - Sediment Monitoring

Colorado River -Williams Fork to Windy Gap

coloruu					1							_										1				1					1				1						-			1			- 1				
		J	an				Fe	eb			M	ar				Apr				Ma	ay			Jui	n				lul				Aug				Sep	2			0	t			No	v			De	ec	
Station	Jan 01	Jan 08		Jan 22	Jan 29	Feb 05		Feb 19	Feb 26	Mar 05	Mar 12	Mar 19	Mar 26	Apr 02	Apr 09	Apr 16	Apr 23	Apr 30	May 07	May 14	May 21	May 28	Jun 04	Jun 11	Jun 18	Jun 25	Jul 02	60 Inf	Jul 16	Jul 23	Jul 30	Aug 06		Aug 20 Aug 27	Con 02		Sep 10	Sep 17	Sep 24	Oct 01		001 15	Oct 29	Nov 05	Nov 12	>	Nov 26	Dec 03	S	8	Dec 31
CR-16.7	DW1													DW1													DW1									A	Q1,SI	ED2		DW1											
CR-18.4														AQ2																																					
CR-19.8																																				A	AQ1,A	Q2													
CR-21.9																																					SED	1													
CR-22.1																																				AQ1	L,AQ2	SED	2												
CR-22.7																																																			
CR-23.5																																																			
CR-24.9																																					AQ	2													
CR-27.5																																					AQ:	1													
CR-28.7	NW2									NW2	2			NW2		NW2	2		NW1		NW2		NW1		NW2		NW2		NW2		١	W2			N	W1,A	AQ1,A	Q2,S	ED2	NW2				NW1	L		(GW1			
CR-29.8																																																			
CR-30																																																			
WG-DAM																			NW9				NW8				NW9				١	W9			N٧	V9															

Abbreviation Approximate months when temperature data are collected

River Name Colorado River CR Sites where there are flow gages

Windy Gap Reservoir WG

Colorado River - Upstream of Windy Gap to Headwaters

River Mile	Entity Station	River				
ID	ID	Mile	Description	Entity	Туре	Location
AC-0.6	AC-GRU	0.6	Arapaho Creek at Monarch Lake upstream of Granby Reservoir	Northern	Water Quality	Arapaho Creek
AC-0.6	AC-GRU	0.6	Arapaho Creek at Monarch Lake upstream of Granby Reservoir	Northern	Temperature	Arapaho Creek
AC-0.6	AC-GRU	0.6	Arapaho Creek at Monarch Lake upstream of Granby Reservoir	Northern	Flow	Arapaho Creek
CH-0.5	CH-WCU	0.5	Church Creek upstream of Willow Creek at Flume	Northern	Water Quality	Church Creek
CLU-0	CLU1-WCU	0	Surface drainage channel on C Lazy U pasture upstream of Willow Creek	Northern	Water Quality	Willow Creek
CLU-0.7	CLU2-IRR	0.7	Upstream end of surface water drainage channel on C Lazy U pasture	Northern	Water Quality	Willow Creek
CR-30.8	CR1	30.8	Colorado River downstream of Fraser, upstream of Windy Gap	CPW	Macroinvertebrate	Colorado River
CR-30.8	CR1	30.8	Colorado River downstream of Fraser, upstream of Windy Gap	CPW	Fish	Colorado River
CR-31	CR-WGU	31	Colorado River upstream of Windy Gap and Fraser River confluence	Northern	Temperature	Colorado River
CR-31	CR-WGU	31	Colorado River upstream of Windy Gap and Fraser River confluence	Northern	Water Quality	Colorado River
CR-31	CR-WGU	31	Colorado River upstream of Windy Gap and Fraser River confluence	Northern	Macroinvertebrate	Colorado River
CR-31	CR-WGU	31	Colorado River upstream of Windy Gap and Fraser River confluence	CPW	Macroinvertebrate	Colorado River
CR-31	CR-WGU	31	Colorado River upstream of Windy Gap and Fraser River confluence	LBD	Sediment	Colorado River
CR-32.1	CR-WCD	32.1	Colorado River downstream of Willow Creek	Northern	Water Quality	Colorado River
CR-34.7	CR-WCU	34.7	Colorado River upstream of Willow Creek	Northern	Water Quality	Colorado River
CR-35.6	CR-YGAGE	35.6	Colorado River downstream Granby Reservoir at flow gage	Northern	Temperature	Colorado River
CR-35.6	09019500	35.6	Colorado River downstream of Granby Reservoir	USGS	Flow	Colorado River
CR-38.3	CR-GRD	38.3	Colorado River downstream of Granby Reservoir	Northern	Water Quality	Colorado River
CR-38.3	CR-GRD	38.3	Colorado River downstream of Granby Reservoir	Northern	Temperature	Colorado River
CR-38.3	CR-GRD	38.3	Colorado River downstream of Granby Reservoir	Northern	Macroinvertebrate	Colorado River
CR-43.5	CR-GRU	43.5	Colorado River upstream of Granby Reservoir	Northern	Temperature	Colorado River
CR-44.6	CR-SMD	44.6	Colorado River downstream of Shadow Mountain Reservoir	Northern	Water Quality	Colorado River
CR-44.6	CR-SMD	44.6	Colorado River downstream of Shadow Mountain Reservoir	Northern	Temperature	Colorado River
CR-44.6	CR-SMD	44.6	Colorado River downstream of Shadow Mountain Reservoir	Northern	Macroinvertebrate	Colorado River
CR-44.6	09015000	44.6	Colorado River downstream of Shadow Mountain Reservoir	USGS	Flow	Colorado River
EI-0.1	EI-GLU	0.1	East Inlet upstream of Grand Lake	Northern	Water Quality	East Inlet
EI-0.1	EI-GLU	0.1	East Inlet upstream of Grand Lake	Northern	Temperature	East Inlet
EI-0.1	EI-GLU	0.1	East Inlet upstream of Grand Lake	Northern	Flow	East Inlet
EI-0.1	EI-GLU	0.1	East Inlet upstream of Grand Lake	Northern	Macroinvertebrate	East Inlet
GL-ATW	GL-ATW		Grand Lake West Portal	Northern	Water Quality	Grand Lake
GL-MID	GL-MID		Grand Lake Mid-Section	Northern	Water Quality	Grand Lake
GL-WES	GL-WES		Grand Lake west end of lake, south of Shadow Mountain Channel	Northern	Water Quality	Grand Lake
GR-DAM	GR-DAM		Granby Reservoir Dam	Northern	Water Quality	Lake Granby
GR-EAS	GR-EAS		Granby Reservoir East Side	Northern	Water Quality	Lake Granby
GR-WES	GR-WES		Granby Reservoir West Side	Northern	Water Quality	Lake Granby
GRP-0	GR-PUMP	0	Granby Pump Canal above Shadow Mountain Reservoir	Northern	Water Quality	Granby Pump Canal

Colorado River - Upstream of Windy Gap to Headwaters

River Mile	Entity Station	River				
ID	ID	Mile	Description	Entity	Туре	Location
GRP-0	GR-PUMP	0	Granby Pump Canal above Shadow Mountain Reservoir	Northern	Temperature	Granby Pump Canal
NF-0.1	CR-SMU	0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern	Water Quality	North Fork of Colorado
NF-0.1	CR-SMU	0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern	Temperature	North Fork of Colorado
NF-0.1	CR-SMU	0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern	Flow	North Fork of Colorado
NF-0.1	CR-SMU	0.1	North Fork of Colorado River upstream of Shadow Mountain Reservoir	Northern	Macroinvertebrate	North Fork of Colorado
NI-0.1	NI-GLU	0.1	North Inlet upstream of Grand Lake	Northern	Water Quality	North Inlet
NI-0.1	NI-GLU	0.1	North Inlet upstream of Grand Lake	Northern	Temperature	North Inlet
NI-0.1	NI-GLU	0.1	North Inlet upstream of Grand Lake	Northern	Flow	North Inlet
RF-0	RF-GRU	0	Roaring Fork upstream Granby Reservoir	Northern	Water Quality	Roaring Fork
RF-0	RF-GRU	0	Roaring Fork upstream Granby Reservoir	Northern	Temperature	Roaring Fork
SM-CHL	SM-CHL		Shadow Mountain Reservoir Channel at mouth in Grand Lake	Northern	Water Quality	Grand Lake
SM-CHL	09014050		Shadow Mountain Channel at Chipmunk Lane	GC/USGS	Temperature	Grand Lake
SM-CHL	09014050		Shadow Mountain Channel at Chipmunk Lane	GC/USGS	Water Quality	Grand Lake
SM-CHL	09014050		Shadow Mountain Channel at Chipmunk Lane	GC/USGS	Flow	Grand Lake
SM-DAM	SM-DAM		Shadow Mountain Reservoir Dam	Northern	Water Quality	Shadow Mountain
SM-MID	SM-MID		Shadow Mountain Reservoir Mid-Section	Northern	Water Quality	Shadow Mountain
SM-NOR2	SM-NOR		Shadow Mountain Reservoir North	Northern	Water Quality	Shadow Mountain
SM-NW1	SM-NW1		Shadow Mountain Reservoir northwest of the center of the Reservoir	Northern	Water Quality	Shadow Mountain
ST-0	ST-GRU	0	Shadow Mountain Channel at Chipmunk Lane	Northern	Water Quality	Stillwater Creek
ST-0	ST-GRU	0	Stillwater Creek upstream Granby Reservoir	Northern	Temperature	Stillwater Creek
WC-0.5	WC-abvCOR	0.5	Willow Creek upstream of confluence with Colorado River	LBD	Temperature	Willow Creek
WC-0.9	WC-CRU	1	Willow Creek upstream of confluence with Colorado River	Northern	Water Quality	Willow Creek
WC-2.3	WC-abvBHD	2.3	Willow Creek upstream of Bunte Highline Ditch	LBD	Temperature	Willow Creek
WC-3.8	WC-WCRD	3.8	Willow Creek directly downstream of Willow Creek Reservoir Dam	Northern	Water Quality	Willow Creek
WC-3.8	WC-WCRD	3.8	Willow Creek downstream of Willow Creek Reservoir	Northern	Temperature	Willow Creek
WC-3.8	WC-WCRD	3.8	Willow Creek downstream of Willow Creek Reservoir	Northern	Flow	Willow Creek
WC-6.3	WC-WCRU	6.3	Willow Creek at USGS Gage upstream C-Lazy-U Ranch	Northern	Water Quality	Willow Creek
WC-6.3	WC-WCRU	6.3	Willow Creek at USGS Gage upstream C-Lazy-U Ranch	Northern	Flow	Willow Creek
WC-DAM	WC-DAM		Willow Creek Reservoir at Dam	Northern	Water Quality	Willow Creek Reservoir
WCP-0	WC-Pump	0	Willow Creek discharge chute to Lake Granby	Northern	Water Quality	Willow Creek Pump Canal
WCP-0	WC-PUMP	0	Willow Creek Pump Canal Inflow to Lake Granby	Northern	Temperature	Willow Creek Pump Canal
WGP-0	WG-Pump	0	Windy Gap discharge chute to Granby Reservoir	Northern	Water Quality	Windy Gap Pump Canal
WGP-0	WG-PUMP	0	Windy Gap Pump Inflow to Granby Reservoir	Northern	Temperature	Windy Gap Pump Canal

Colorado River - Upstream of Windy Gap to Headwaters

nevel Field Deveryeters	NDA/4	NIA/2			d Strea		103	6502		1	Reserv	1
neral Field Parameters	NW1	NW2	NW3	NW4	NW5	AQ1	AQ2	SED2	NW6	NW7	NW8	NW
Temperature	Х	Х	Х	Х	Х				Х	Х	Х	X
Dissolved Oxygen	Х	Х	Х	Х	Х				Х	Х	Х	X
Specific Conductance	Х	Х	Х	Х	Х				Х	Х	Х	X
pH	Х	Х	Х	Х	Х				Х	Х	Х	Х
Turbidity	Х	Х	Х	Х	Х				Х	Х	Х	Х
Flow	Х	х	х	х	х							
secchi depth									х	х	х	Х
ajor lons (plus carbon and mis	5C)											
Calcium	Х								Х		Х	
Magnesium	Х								Х		х	
Potassium	Х								х		х	
Sodium	Х								х		х	
Chloride	Х								Х		Х	
Sulfate	X								X		X	
Total Organic Carbon	X	х							X	х	X	Х
Total Alkalinity	X	~							X	~	X	
Total Suspended Solids	X	х	х						X	х	X	x
	^	^	^						^	^	^	
Total Dissolved Solids												
etals	V								V		X	
Iron, total	X								X		X	
Arsenic, total	Х								Х		X	
Chromium, total	Х								Х		Х	
Copper, dis	Х								Х	Х	Х	X
Iron, dis	Х								Х	Х	Х	
Manganese, dis	Х				Х				Х	Х	Х	X
Arsenic, dis	Х								Х		Х	
Boron, dis	Х								Х		Х	
Cadmium, dis	Х								х		х	
Chromium, dis	Х								х		х	
Lead, dis	Х								х		Х	
Nickel, dis	Х								Х		Х	
Selenium, dis	Х								Х		х	
Silver, dis	Х								х		х	
Uranium, dis	Х								Х		Х	
Zinc, dis	х								Х		Х	
trients												
TKN	Х	Х	Х	Х					Х	Х	Х	
NH3 as N	X	X	X	X					X	X	X	
NO3+NO2	X	X	X	X					X	X	X	>
-	X	X	X						X	X		-
Ortho P				X							X	
P Total	Х	Х	X	X					X	X	X	
chlorophyll a									Х	Х	Х	
uatic Habitat												
Phytoplankton									Х	X		
Zooplankton									Х	Х		
Macroinvertabrates						Х						
Fish							Х					
Pebble Count								Х				
Embeddedness								Х				

NW - Northern Water

AQ- Aquatic Life (bugs/fish)

SED - Sediment Monitoring

		Jan			Fe	b			Mar				Apr				May			Jun			Ju	ul 🛛			Aug		9	Sep			Oc	t		No	v		Г	Dec	
Station	an 01	an 15	Jan 22	eb 05	⁼ eb 12	eb 19 eb 26	Mar 05	Mar 12	Mar 19	Mar 26	Apr 02	Apr 09	- · ·	Apr 23	Apr 30	May 07	May 14 May 21	May 28	un 04	un 11	un 18 un 25	ul 02	116	ul 23	ul 30	10 00	-	Aug 27	Sep 03 Sep 10	Sep 17	Sep 24	Oct 01 Oct 08	-	Dct 22 Dct 29	Vov 05	Vov 12	Nov 19	Vov 26 Dec 03	Dec 10	Dec 17	Dec 24
AC-0.6	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1			NW2			NW1						
CH-0.5	NW4						NW	1			NW	4	NW4			N	IW4	NW	Ļ	NW4	NW	4 N	W4	NW	/4	NW4			NW4			NW4			NW4						
CLU-0	NW4						NW	1			NW	4	NW4		NW4	NW4 N	W4 NW	/4 NW	NW4	NW4 N	W4 NW	4 NW4 N	W4 NV	V4 NW	/4 NW	4															
CLU-0.7																NW4 N	W4 NW	/4 NW	NW4	NW4 N	W4 NW	4 NW4 N	W4 NV	V4 NW	/4 NW	4															
CR-31	NW5	NW	2				NW	5	NW	2	NW:	2,NW5		NW2		NW1	NW2,	NW5	NW1	NW	2,NW5	NW2,NV	/5	NW	/2	NW2,NW5	;		NW1 AQ1	SED2		NW2,NW	/5	NW5	NW1		NW5				
CR-32.1	NW5						NW.	5			NW	5				NW5	NW	/5	NW5	N	W5	NW5				NW5			NW5			NW5		NW5	NW5		NW5				
CR-34.7	NW5						NW.	5			NW	5				NW5	NV	/5	NW5	N	W5	NW5				NW5			NW5			NW5		NW5	NW5		NW5				
CR-35.6	NW5						NW	5			NW	5				NW5	NW	/5	NW5	N	W5	NW5				NW5			NW5			NW5		NW5	NW5		NW5				
CR-38.3	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1 AQ1			NW2			NW1						
CR-43.5																																									
CR-44.6	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1 AQ1			NW2			NW1						
EI-0.1	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1 AQ1			NW2			NW1						
GL-ATW	NW8						NWS	Э								NW9			NW8			NW9				NW9			NW9			NW8									
GL-MID	NW6						NW	7								NW7			NW6			NW7				NW7			NW7			NW6									
GL-WES																																									_
GR-DAM	NW6						NW	7								NW7			NW6			NW7				NW7			NW7			NW6									
GR-EAS	NW8						NWS	Э								NW9			NW8			NW9				NW9			NW9			NW8									
GR-WES	NW8						NWS	Э								NW9			NW8			NW9				NW9			NW9			NW8									
GRP-0	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1			NW2			NW1						
VF-0.1	NW2						NW2	2			NW	2				NW1			NW1			NW2				NW2			NW1 AQ1			NW2			NW1						_
VI-0.1	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1			NW2			NW1						
RF-0	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1			NW2			NW1						
SM-CHL	NW6						NW	7								NW7			NW6			NW7				NW7			NW7			NW6									
SM-DAM	NW6						NW	7								NW7			NW6			NW7				NW7			NW7			NW6									
SM-MID	NW6						NW	7								NW7			NW6			NW7				NW7			NW7			NW6									
SM-NOR2																																									
5M-NW1																																									
ST-0	NW2						NW	2			NW	2				NW1			NW1			NW2				NW2			NW1			NW2			NW1						
WC-0.5																																									
WC-0.9	NW5						NW	5			NW	5				NW5	NW	/5	NW5	N	W5	NW5				NW5			NW5			NW5		NW5	NW5		NW5			\square	
WC-2.3																									_																
NC-3.8	NW2						NW	2			NW	2	NW3			N	IW1	NW	3	NW1	NW	3 N	W2	NW	/3	NW2			NW1			NW2			NW1						
WC-6.3	NW3						NW3	3			NW	3	NW3			N	IW3	NW	3	NW3	NW	3 N	W3	NW	/3	NW3			NW3			NW3	1		NW3						
WC-DAM	NW6						NW	7								NW7			NW6			NW7				NW7			NW7			NW6	1								T
WCP-0							NW	2 NW	2 NW	2 NW	2 NW	2 NW	2 NW2	NW2	NW2	NW1 N	W2 NW	/2 NW	NW1	NW2 N	W2 NW	2 NW2 N	W2 NV	V2 NW	/2 NW	2 NW2 NW	2 NW2	NW2	NW1 NW2	2 NW2	NW2	NW2	NW2	!	NW1		NW2				T
WGP-0													NW2	NW2	NW2	NW1 N	W2 NW	/2 NW	NW1	NW2 N	W2 NW	2 NW2 N	W2 NV	V2 NW	/2 NW	2 NW2															

River Name	Abbreviation	River Name	Abbreviation
Arapaho Creek	AC	North Inlet	NI
Church Creek	СН	Roaring Fork	RF
Colorado River	CR	Shadow Mountain	SM
East Inlet	EI	Stillwater Creek	ST
Granby Pump Canal	GRP	Trail Creek	TR
Granby Pump Canal Canal	GRP	Willow Creek	WC
Grand Lake	GL	Willow Creek Pump Canal	WCP
Lake Granby	GR	Willow Creek Reservoir	WC
North Fork of Colorado	NF	Windy Gap Pump Canal	WGP

Approximate months when temperature data are collected

Secchi measurements collected 3x a week

Sites where there are flow gages

River Mile		River				
ID	Entity Station ID	Mile	Description	Entity	Туре	Location
CB-0.6	CAB-abvChan	0.6	Cabin Creek upstream North and South Channels	Denver Water	Temperature	Cabin Creek
CB-2.7	09032100	2.7	CABIN CREEK NEAR FRASER, CO.	DW/USGS	Flow	Cabin Creek
CB-2.7	CAB-blwDWB	2.7	Cabin Creek downstream Denver Water diversion	Denver Water	Temperature	Cabin Creek
CC-1.5	395927105505700	1.5	Crooked Cr Abv Pole Creek At Tabernash	EGWQB	Water Quality	Crooked Creek
EC-5.5	09025300	5.5	Elk Creek near Fraser	DW/USGS	Flow	Elk Creek
C-5.5	Elk-blwDWB	5.5	Elk Creek downstream Denver Water diversion	Denver Water	Temperature	Elk Creek
FR-0.1	FR-WGU	0.1	Fraser River upstream of confluence with Colorado River	Northern	Water Quality	Fraser River
FR-0.1	FR-WGU	0.1	Fraser River upstream of confluence with Colorado River	Northern	Temperature	Fraser River
FR-0.1	FR-WGU	0.1	Fraser River upstream of confluence with Colorado River	Northern	Macroinvertebrate	Fraser River
FR-0.1	FR-WGU	0.1	Fraser River upstream of confluence with Colorado River	Northern	Flow	Fraser River
FR-1.6	FR-blwGSD	1.6	Fraser River downstream of Granby Sanitation District	GCWIN	Temperature	Fraser River
FR-1.9	FR-abvGSD	1.9	Fraser River upstream of Granby Sanitation District	GCWIN	Temperature	Fraser River
FR-3.5	400453105554200	3.5	Fraser River At Hwy. 40 At Granby, Co	EGWQB	Water Quality	Fraser River
FR-3.5	FR-Hwy40Gr	3.5	Fraser River blw Highway 40 in Granby	GCWIN/LBD	Temperature	Fraser River
R-4.5	FR-blwFRCan	4.5	Fraser River downstream Fraser Canyon	GCWIN	Temperature	Fraser River
R-5.5	F9	5.5	Fraser River at Granby Ranch downstream of golf course	LBD	Sediment	Fraser River
R-12.4	09033300	12.4	Fraser River downstream of Crooked Creek and Tabernash	EGWQB/CRWCD	Water Quality	Fraser River
FR-12.4	FR-abvFrCan	12.4	Fraser River downstream of Crooked Creek and Tabernash	GCWIN	Temperature	Fraser River
FR-12.4	09033300	12.4	Fraser River downstream of Crooked Creek and Tabernash	EGWQB/CRWCD	Flow	Fraser River
FR-14	9027100	14	Fraser River upstream of Tabernash	EGWQB	Water Quality	Fraser River
FR-14	09027100	14	Fraser River upstream of Tabernash	EGWQB/TU	Temperature	Fraser River
FR-14	FR-CR83	14	Fraser River upstream of Tabernash	Denver Water	Macroinvertebrate	Fraser River
FR-14	FR-CR83	14	Fraser River upstream of Tabernash	LBD	Sediment	Fraser River
FR-14	09027100	14	Fraser River upstream of Tabernash	EGWQB/USGS	Flow	Fraser River
FR-14.4	FR-SpProjD	14.4	Fraser River LBD Restoration Project, Downstream end	GCWIN	Temperature	Fraser River
-R-14.4		14.4	Winter Park W & S	CPW	Fish	Fraser River
R-15	FR-SpProjU	15	Fraser River LBD Restoration Project, Upstream end	GCWIN	Temperature	Fraser River
-R-15	FR-SpProjU	15	Fraser River LBD Restoration Project, Upstream end	LBD	Macroinvertebrate	Fraser River
FR-15	FR-SpProjU	15	Fraser River LBD Restoration Project, Upstream end	LBD	Sediment	Fraser River
R-16.6	FR-blwFSD	16.6	Fraser River downstream Fraser Sanitation	GCWIN	Temperature	Fraser River
R-16.9	FR-abvFSD	16.9	Fraser River upstream Fraser Sanitation	GCWIN	Temperature	Fraser River
R-17.7	FR-blwCR8HD	17.7	Fraser River downstream County Rd 8 at Hammond Ditch	GCWIN	Temperature	Fraser River
R-18.1	FR-CR804	18.1	Fraser River downstream County Rd 804	GCWIN	Temperature	Fraser River
FR-18.1		18.1	Safeway	CPW	Fish	Fraser River
R-20	FR-Rendezvous	20	Fraser River at Rendezous bridge	GCWIN	Temperature	Fraser River
FR-20	FR-Rendezvous	20	Fraser River at Rendezous bridge	Denver Water	Macroinvertebrate	Fraser River
FR-20	FR-Rendezvous	20	Fraser River at Rendezous bridge	LBD	Sediment	Fraser River

River Mile		River				
ID	Entity Station ID	Mile	Description	Entity	Туре	Location
FR-20.6	09025010	20.6	Fraser River Blw Vasquez Creek At Winter Park Co.	EGWQB	Water Quality	Fraser River
FR-21		21	Confluence Park	CPW	Fish	Fraser River
FR-22.5	FR-blwWP	22.5	Fraser River downstream Winter Park Resort at Idlewild Campground	GCWIN	Temperature	Fraser River
FR-22.5		22.5	Idlewild Campground	CPW	Fish	Fraser River
FR-22.5	09024000	22.5	Fraser River at Winter Park	DW/USGS	Flow	Fraser River
FR-23.2	FR-blwWPSD	23.2	Fraser River downstream Winter Park Sanitation	GCWIN	Temperature	Fraser River
FR-23.4	09023750	23.4	Fraser River Blw Buck Creek At Winter Park Co.	EGWQB	Water Quality	Fraser River
FR-23.4	FR-abvWPSD	23.4	Fraser River upstream Winter Park Sanitation District	GCWIN	Temperature	Fraser River
FR-23.4	FR-abvWPSD	23.4	Fraser River upstream Winter Park Sanitation District	Denver Water	Macroinvertebrate	Fraser River
FR-23.4	FR-abvWPSD	23.4	Fraser River upstream Winter Park Sanitation District	LBD	Sediment	Fraser River
FR-24	09023560	24	Fraser River upstream Moffat Tunnel Nr Winter Park, Co	EGWQB	Water Quality	Fraser River
FR-24	WS-FR-010	24	Fraser/Jim Canal at Gaging Station	Denver Water	Water Quality	Fraser River
FR-27.2	09022000	27.2	Fraser River At Upper Sta, Near Winter Park, Co.	EGWQB	Water Quality	Fraser River
FR-27.2	FR-Upper	27.2	Fraser R upstream Mary Jane entrance to Winter Park	GCWIN	Temperature	Fraser River
FR-27.2	09022000	27.2	Fraser River At Upper Sta, Near Winter Park, Co.	EGWQB/USGS	Flow	Fraser River
FR-27.2	FR US JimCk	27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	LBD	Sediment	Fraser River
FR-27.2	FR US JimCk	27.2	Fraser River upstream of Jim Creek and Mary Jane Entrance	LBD	Macroinvertebrate	Fraser River
HC-0.5	HRD-atCR843	0.5	Herd Creek on County Road 843	Denver Water	Temperature	Herd Creek
LCB-2.2	LCAB-blwDWB	2.2	Little Cabin Creek downstream Denver Water diversion	Denver Water	Temperature	Little Cabin Creek
LVC-0.2	LVC- abvWP	0.2	Little Vasquez upstream Winter Park on Arapaho Road	Denver Water	Temperature	Little Vasquez Creek
MC-0.5	MEA-atCR84	0.5	Meadow Creek on County Road 84/USFS 129	Denver Water	Temperature	Meadow Creek
RC-1.1	09033100	1.1	Ranch Creek Blw Meadow Cr Nr Tabernash Co	EGWQB/CRWCD	Water Quality	Ranch Creek
RC-1.1	09033100	1.1	Ranch Creek Blw Meadow Cr Nr Tabernash Co	GC/DW	Temperature	Ranch Creek
RC-1.1	RC-blwMC	1.1	Ranch Creek downstream Meadow Creek	GCWIN	Temperature	Ranch Creek
RC-1.1	RC-blwMC	1.1	Ranch Creek downstream Meadow Creek	LBD	Macroinvertebrate	Ranch Creek
RC-1.1	F-RC2	1.1	Ranch Creek downstream of County Road 84	LBD	Sediment	Ranch Creek
RC-1.1	09033100	1.1	Ranch Creek Blw Meadow Cr Nr Tabernash Co	EGWQB/CRWCD	Flow	Ranch Creek
RC-4.7	RC-blwCR8315	4.7	Ranch Creek downstream County Rd 8315	GCWIN	Temperature	Ranch Creek
RC-9	09032000	9	Ranch Creek Near Fraser, Co.	EGWQB	Water Quality	Ranch Creek
RC-9	09032000	9	Ranch Creek Near Fraser, Co.	EGWQB/USGS	Flow	Ranch Creek
RCC-0	WS-FR-011	0	Ranch Canal at Gaging Station	Denver Water	Water Quality	Ranch Canal
STC-0	ST-LC	0	St. Louis Creek upstream confluence with Fraser River	GCWIN/LBD	Temperature	St Louis Creek
STC-0	STC FR	0	St. Louis Creek upstream confluence with Fraser River	LBD	Sediment	St. Louis Creek
STC-0	STC FR	0	St. Louis Creek upstream confluence with Fraser River	LBD	Macroinvertebrate	St. Louis Creek
STC-5.4	09026500	5.4	St. Louis Creek near Fraser	DW/USGS	Flow	St Louis Creek
STC-5.4	STC-Mid	5.4	St. Louis Creek at Fraser Experimental Forest HQ	LBD	Temperature	St Louis Creek
STC-9.8	STC-blwDWB	9.8	St. Louis Creek downstream Denver Water Board diversion	Denver Water	Temperature	St Louis Creek

River Mile		River				
ID	Entity Station ID	Mile	Description	Entity	Туре	Location
VC-0	VC-WP	0	Vasquez Creek at the town of Winter Park	GCWIN	Temperature	Vasquez Creek
VC-0	09025000	0	Vasquez Creek at the town of Winter Park	DW/USGS	Flow	Vasquez Creek
VC-0	VC-WP	0	Vasquez Creek at the town of Winter Park	Denver Water	Macroinvertebrate	Vasquez Creek
VC-4.3	WS-FR-001	4.3	Vasquez Ck. upstream Vasquez Tunnel	Denver Water	Water Quality	Vasquez Creek
VC-8	WS-FR-002	8	Vasquez Ck. at diversion structure	Denver Water	Water Quality	Vasquez Creek
VCC-0	WS-FR-009	0	Vasquez Canal at Vasquez #1 Gaging Station	Denver Water	Water Quality	Vasquez Canal
VT-0	WS-WF-019	0	Vasquez Tunnel outlet	Denver Water	Water Quality	Vasquez Canal

-													
Gener	al Field Parameters	NW1	NW2	DW1	EG1	EG2	EG3	EG4	EG5	EG6	AQ1	AQ2	SED2
	Temperature	Х	Х	Х	Х	Х	Х	Х	Х	Х			
	Dissolved Oxygen	Х	Х	Х	Х	Х	Х	Х	Х	Х			
	Specific Conductance	Х	Х	Х	Х	Х	х	Х	Х	Х			
	рН	Х	Х	Х	Х	Х	х	Х	Х	Х			
	Turbidity	х	Х	х	Х	х	х	х	х	х			
	Flow	Х	Х	Х	Х	Х	х	Х	х	Х			
Major	Ions (plus carbon and mis	<u>c)</u>											
	Calcium	Х					Х	х	х	х			
	Magnesium	х					х	Х	х	Х			
	Potassium	Х											
	Sodium	х											
	Chloride	х			х	Х	х	Х	х	Х			
	Sulfate	х											
	Total Organic Carbon	Х	х										
	Total Alkalinity	х		х									
	Total Suspended Solids	х	х	Х					х	Х			
	Total Dissolved Solids	-							Х	Х			
	Cyanide	-							Х	Х			
	Ecoli				-				~	~			
Metal													
metal	ICPMS Total/Dis Suite*			Х									
	Iron, total	х		~					х	х			-
	Aluminum, total	~							~	~			
	Arsenic, total	х							х	х			
		^							X	X			
	Boron, total	v											-
	Chromium, total	Х							Х	Х			
	Manganese, total												
	Aluminum, dis				-								-
	Copper, dis	Х					Х	Х	Х	Х			
	Iron, dis	Х					Х	Х	Х	Х			
	Manganese, dis	Х							Х	Х			
	Arsenic, dis	Х											
	Boron, dis	Х											
	Cadmium, dis	Х							Х	Х			
	Chromium, dis	Х											
	Lead, dis	Х					Х	Х	Х	Х			
	Nickel, dis	Х							Х	Х			
	Selenium, dis	Х							Х	Х			
	Silver, dis	Х							х	Х			
	Uranium, dis	Х							Х	Х			
	Zinc, dis	Х					х	Х	х	Х			
	Mercury, dis					Х		х	Х	х			
<u>Nutrie</u>	ents	-											
	TKN	х	х		х	х	х	х	х				
	NH3 as N	х	Х		х	Х	х	Х	х				
	NO3												
	NO3+NO2	х	х		х	х	х	х	х				
	Ortho P	х	Х		х	Х	х	Х	х				
	P Total	Х	х	Х	х	х	х	х	х				
Aquat	ic Habitat			1		1		1					
	Macroinvertabrates										Х		
	Fish											х	
	Riffle Stability Index												
	Pebble Count												х
	Embeddedness												X
****	AS Total/Dis Suito Ro R		AL C:	KC				7. 4	- (-)	4	C.I. Ch	0. 11.	

*ICPMS Total/Dis Suite - Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Tl, Pb, U

DW - Denver Water

NW - Northern Water

AQ- Aquatic Life (bugs/fish)

EG - East Grand Water Quality Board

SED - Sediment Monitoring

Fraser River -	Colorado	River to	Winter Park
ridser River -	Colorado	River to	winter Park

		Jan		I	Feb			Mar			Apr			May			Jun			Jul			Α	Aug			Sep				Oct			Nov			Dec	
Station	Jan 01 Jan 08	Jan 15	Jan 22 Jan 29	Feb 05 Eeh 12	Feb 19	Feb 26	Mar 05	Mar 12 Mar 19	Mar 26 Anr 02		16	Apr 23 Apr 30	May 07	May 14	12 YEIN	Jun 04	Jun 11	Jun 18 Jun 25	Jul 02	Jul 09 Jul 16	Jul 23	Jul 30 Aug 06			Aug 27	Sep 03	Sep 10	Sep 17	Sep 24 Oct 01	Oct 08	Oct 15	Oct 22 Oct 29	Nov 05	Nov 12 Nov 19	Nov 26	Dec 03	Dec 10 Dec 17	
CB-0.6																																						
CB-2.7																																						
CC-1.5	EG1						EG1						EG2						EG1						E	G2							EG1					
EC-5.5																																						
FR-0.1	NW2						NW2		NV	V2	NW2		NW1	N١	N2	NW1	N	IW2	NW2	NW2	2	NV	/2		N	IW1		AQ1	NW	/2			NW1					
FR-1.6																																						
FR-1.9																																						
FR-3.5	EG1						EG1				AQ2		EG1						EG1						E	G1							EG1					
FR-4.5																																						
FR-5.5																											S	SMP1										
FR-12.4	EG1												EG1			EG1			EG1	_		EG				G1							EG1					
FR-14	EG1			EG1			EG3		EG	i1			EG4			EG1			EG3	_		EG	1		E	G4		1,SED	2 EG	1			EG1			EG1		
FR-14.4																_				_			_					AQ2	_									
FR-15																_				_			_				AQ	1,SED	2									
FR-16.6										_						_				_			_						_								_	
FR-16.9																_				_			_						_									
FR-17.7																_				_			_						_									
FR-18.1																_				_			_					AQ2	_									
FR-20																											AQ	1,SED										
FR-20.6	EG1			EG1			EG3		EG	i1			EG4			EG1			EG3			EG	1		E	G4			EG	1			EG1			EG1		
FR-21											AQ2																	AQ2										
FR-22.5											AQ2					_												AQ2										
FR-23.2					_											_																						
FR-23.4	EG5			EG1			EG3		EG	i1			EG4			EG1			EG3			EG	1			G4	AQ	1,SED	2 EG	1			EG5			EG1		
FR-24	EG6	DW1					EG6				DW1		EG6						EG6	DW1	L		_			G6					DW1		EG6					_
FR-27.2													EG4			_			EG1						E	G4	AQ	1,SED	2 EG	1			EG1			EG1		_
HC-0.5																_				_			_						_									
LCB-2.2																_				_			_						_									
LVC-0.2																_				_			_						_									
MC-0.5																_				_			_						_									
RC-1.1	EG1			EG1			EG1		EG	i1			EG2			_			EG1	_		EG	1		E	G2	AQ	1,SED	1				EG1					
RC-4.7																																						
RC-9	EG1												EG4			_			EG3			EG	1		E	G4			EG				EG1					
RCC-0	DW1				_				DV	V1						-			DW1										DW	/1					_		_	
STC-0	\vdash	-		\vdash	_	_	-			_	-																AQ	1,SED	2						_	\vdash	-	
STC-5.4					_					_						-													_						_		_	
STC-9.8							1				1																								_			+ +
VC-0					_					_																		AQ1							_		_	
VC-4.3							1				1					DW1					\square					W1									_			+ +
VC-8							1				1					DW1					+				D	W1									_			+ +
VCC-0	DW1				_		-		DV	V1						-			DW1	_									DW	/1								+
VT-0							1			1	1		1			DW1			1	1	1				D	W1					1			1			1	

River Name	Abbrevation	River Name	Abbrevation
Cabin Creek	СВ	Meadow Creek	MC
Cabin Creek North Channel	CBN	Ranch Creek	RC
Cabin Creek South Channel	CBS	Ranch Creek Canal	RCC
Little Cabin Creek	LCB	Saint Louis Creek	STC
Crooked Creek	CC	Vasquez Creek	VC
Elk Creek	EC	Vasquez Creek Canal	VCC
Fraser River	FR	Little Vasquez Creek	LVC
Herd Creek	HC		

Approximate months when temperature data are collected

Sites where there are flow gages

Williams Fork

River Mile	Entity Station	River				
ID	ID	Mile	Description	Entity	Туре	Location
BC-0	WS-WF-008	0	Bobtail Creek above diversion dam downstream of gauging station	Denver Water	Water Quality	Bobtail Creek
BC-0	09034900	0	Bobtail Creek above diversion dam	Denver Water	Flow	Bobtail Creek
MQC-0	WS-WF-006	0	McQueary Creek above diversion dam 1 3/4 miles north of dorm	Denver Water	Water Quality	McQuery Creek
SC-0	WS-WF-005	0	Steelman Creek at bridge above diversion dam (south of dorm)	Denver Water	Water Quality	Steelman Creek
SWF-0	WS-WF-003	0	South fork at South Fork Campground at gauging station	Denver Water	Water Quality	South Fork WF
SWF-0	09035900	0	South fork at South Fork Campground	DW/USGS	Flow	South Fork WF
USF-0	WS-WF-007	0	Upper South Fork of the Williams Fork (3.5 miles above trail head)	Denver Water	Water Quality	Upper South Fork WF
WF-2	WS-WF-009	2	WIlliams Fork R. below Williams Fork Reservoir	Denver Water	Water Quality	Williams Fork
WF-2	09038500	2	WIlliams Fork R. below Williams Fork Reservoir	DW/USGS	Flow	Williams Fork
WF-2	WF-WFRD	2	WIlliams Fork R. below Williams Fork Reservoir	LBD	Macroinvertebrate	Williams Fork
WF-5.5	WS-WF-001	5.5	Williams Fork River upstream of Williams Fork Reservoir	Denver Water	Water Quality	Williams Fork
WF-5.5	09037500	5.5	WILLIAMS FORK NEAR PARSHALL, CO	DW/USGS	Flow	Williams Fork
WF-5.5	WF-abvWFR	5.5	Williams Fork upstream of Williams Fork Reservoir	LBD	Temperature	Williams Fork
WF-5.5	WF-WFRU	5.5	Williams Fork upstream of Williams Fork Reservoir	LBD	Macroinvertebrate	Williams Fork
WF-13.1	KR-LS-11081	13.1	Williams Fork	BLM	Water Quality	Williams Fork
WF-13.1	KR-LS-11081	13.1	Williams Fork	BLM	Macroinvertebrate	Williams Fork
WF-13.1	KR-LS-11081	13.1	Williams Fork	BLM	Habitat	Williams Fork
WF-13.1	WF-HMD	13.1	Williams Fork downstream of Henderson Mill	LBD	Macroinvertebrate	Williams Fork
WF-19	WS-WF-002	19	WilliamsForkRiver below Kinney Creek confluence at Leal gauge	Denver Water	Water Quality	Williams Fork
WF-19	09036000	19	WILLIAMS FORK NEAR LEAL, CO.	DW/USGS	Flow	Williams Fork
WF-19.6	09035700	19.6	WILLIAMS FORK ABOVE DARLING CREEK, NEAR LEAL, CO	DW/USGS	Flow	Williams Fork
WF-22.6	WS-WF-004	22.6	Williams Fork above bridge at Sugarloaf Campground	Denver Water	Water Quality	Williams Fork
WF-28.2	09035500	28.2	WILLIAMS FORK BELOW STEELMAN CREEK, CO.	DW/USGS	Flow	Williams Fork

Williams Fork

General Field Parameters	DW1	BLM1	AQ1	AQ2
Temperature	Х	Х		
Dissolved Oxygen	Х	Х		
Specific Conductance	Х	х		
рН	Х	Х		
Turbidity	Х			
Flow	Х			
Major lons (plus carbon and misc)				
Calcium				
Magnesium				
Potassium				
Sodium				
Chloride				
Sulfate				
Total Organic Carbon				
Total Alkalinity	Х			
Total Suspended Solids	Х			
Total Dissolved Solids				
Ecoli				
Metals				
ICPMS Total/Dis Suite*	Х			
Nutrients				
TKN		Х		

TKN		Х	
NH3 as N		Х	
NO3			
NO3+NO2		Х	
Ortho P			
P Total	Х	Х	

Aquatic Habitat

Macroinvertabrates	Х	Х	
Fish			
Habitat (% fines,% pools, etc)	Х		Х

*ICPMS Total/Dis Suite - Be, B, Na, Mg, Al, Si, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, Hg, Tl, Pb, U

DW - Denver Water

BLM -Bureau of Land Management

AQ- Aquatic Life (bugs/fish)

Williams Fork

Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
BC-0					DW1				DW1			
MQC-0					DW1				DW1			
SC-0					DW1				DW1			
SWF-0					DW1				DW1			
USF-0					DW1				DW1			
WF-2	DW1		DW1	DW1	DW1	DW1	DW1		DW1,AQ1		DW1	
WF-5.5	DW1		DW1	DW1	DW1	DW1	DW1		DW1,AQ1		DW1	
WF-13.1				BLM1					AQ1			
WF-19					DW1				DW1			
WF-19.6												
WF-22.6					DW1				DW1			
WF-28.2												

River Name	Abbreviation
Bobtail Creek	BC
McQuery Creek	MQC
South Fork	SF
Steelman Creek	SC
Williams Fork	WF

Sites where there are flow gages

Approximate months when temperature data are collected

Appendix C – 2021 List of Projects in the Cooperative Effort Area

List of Projects in the Cooperative Effort Area

Project name	Project type	Project cost	Funding sources	Project status	In IPP? (part of Basin Implem Plan)	Description	Benefits	Location
Fraser Flats River Habitat Project	River restoration; rechanneling	\$202,400	LBD partners: \$61,000; CPW grant: \$87,900; Patagonia Enviro grant: \$3,500; property owner: \$50,000	Completed 2017		River rechanneling to increase velocity and depths of flows during low flow periods; revegetation of river bank; public fishing access	Increase adult trout habitat; improve width-to- depth ratio at low flows; lower stream temperature; open 0.4-miles to public fishing	Upstream lat: 39.981338 long: - 105.82494; Tabernash, CO
Williams Fork River Restoration Project	River restoration; rechanneling	\$984,000	Denver Water	Completed 2019		0.34 mile upstream of Williams Fork Reservoir, 0.88 mile directly below reservoir and 0.86 mile on Kemp Breeze State Wildlife Area (2.08 miles total)	Increase adult trout habitat; improve width -to-depth ratio at low flows	Denver Water property upstream and downstrea m of Williams Fork Reservoir; Kemp Breeze State Wildlife Area, Parshall, CO
Kemp-Breeze	Process-based	\$1. <mark>2</mark>	Northern	60% design		Process-based	Goals are to	Kemp

Liphitat Drain -t	river	million	Water Denver	taha	river	improve	Drooza
Habitat Project	river	million	Water, Denver	to be	river	improve	Breeze
on the	restoration		Water and	complete	restoration	macroinverteb	State
Colorado River			CPW as	in February	project	rate and small	Wildlife
			described in	2020;	incorporating	fish habitat	Area,
			the Fish and	constructio	habitat	and	Parshall,
			Wildlife	n	manipulation	production, in	CO
			Mitigation	scheduled	and strategic	particular for	
			Plans	for 2022	addition of	giant stonefly	
			associated		wood and	and mottled	
			with Windy		gravel/cobble	sculpin, and	
			Gap and		substrate	increase trout	
			Moffat firming			habitat	
			projects				
Town of	Fish passage	\$279,200	US Fish &	Completed	Rebuild of	Reconnection	Kaibab
Granby	improvement		Wildlife	2020	Town of	of previously	Park, Town
Diversion			Service; CWCB		Granby	fragmented	of Granby
Structure					diversion	aquatic	
rebuilt					structure on	habitat	
					the Fraser		
					River to allow		
					for passage of		
					all fish species		
					present in the		
					reach.		
Irrigators of	River	\$3.8	CWCB; Natural	\$400,000	River	River channel	12 miles
Lands in the	restoration,	million	Resources	of	restoration,	improvements	total.
Vicinity of	diversion		Conservation	completed	bank repair	and improved	Upstream
Kremmling	structures		Service (RCPP);	work in fall	and diversion	irrigation	end: CR 39;
Upper			property	2018;	structure/	efficiency	downstrea
Colorado River			owners	additional	ditch repair	,	m end: 1.5
Irrigation and				work	•		miles on
Restoration				spread			the Blue
Project				over 3-4			River
-,				years			below the
				,			confluence
							with the
							Colorado
							River
							NIVEI

Ranch Creek Riparian Habitat Restoration Project	Restoration of vegetation canopy along river bank	\$2,650	Patagonia Enviro grant	Two plantings, spring 2018 and 2019 completed	No	Planting of willow stakes along a 1.0 mile reach of Ranch Creek to restore streamside vegetation after over- grazing	Improve stream bank stability and reduce solar influence	1.0 mile section of Ranch Creek, a tributary to the Fraser River. Upstream lat 39.978214 2; long - 105.79186 8
Cabin Creek AOP Culvert	Fish passage and minor stream restoration	\$161,900	USF&WS grant: \$81.1K; DW \$41K in- kind; USFS \$37,600 in- kind; Grand County \$2200 in-kind	Constructi on planned for fall 2021	No	Replace culvert with Aquatic Organism Culvert to allow fish passage	Aquatic habitat improvement project for Colorado River Cutthroat Trout	FS Road 128; Lat 39°59'1"N Long- 105°44'53. 344"W
Connectivity Channel adjacent to Windy Gap Reservoir	Watershed health, rechanneling of river around the reservoir	Excess of \$20M	CWCB watershed; Federal; Water district	Initiated	Yes	Rechanneling the Colorado River around Windy Gap Reservoir	Restore the river's aquatic habitat; allow fish and macroinverteb rate passage; allow sediment transport; lower stream temperatures	Colorado River adjacent to Windy Gap Reservoir